【題目】設(shè)函數(shù)
.
(I)討論
的單調(diào)性;
(Ⅱ)當(dāng)
時(shí),討論
的零點(diǎn)個(gè)數(shù).
【答案】(1)見解析;(2)
當(dāng)
時(shí),共有3個(gè)零點(diǎn).
【解析】
(I)求出導(dǎo)函數(shù) f'(x)=2(x﹣1)(1nx+a)(x>0).通過①當(dāng)a=0時(shí),②當(dāng)a>0時(shí),③當(dāng)a<0時(shí),判斷導(dǎo)函數(shù)的符號,然后判斷函數(shù)的單調(diào)性.
(Ⅱ)當(dāng)a<﹣2時(shí),由(I)知f(x)在(0,1)上遞增,(1,e﹣a)上遞減,(e﹣a,+∞)上遞增,當(dāng)x∈(0,1)時(shí)存在x0,使f(x0)<0.推出函數(shù)f(x)在(0,1)上的單調(diào)性,可知f(x)在(0,1)上有唯一的一個(gè)零點(diǎn).說明在x∈(e﹣a,+∞)上,存在x1,使f(x1)>0,然后推出f(x)當(dāng)a<﹣2時(shí),共有3個(gè)零點(diǎn).
(I)
.
①當(dāng)
時(shí),
,當(dāng)
時(shí),
,
當(dāng)
時(shí),
,當(dāng)
時(shí),
.
在
遞增
②當(dāng)
時(shí),令
,得
,此時(shí)
.
易知
在
遞增,
遞減,
遞增
③當(dāng)
時(shí),
.易知
在
遞增,
遞減,
遞增
(Ⅱ)當(dāng)
時(shí),由(I)知
在
上遞增,
上遞減,
上遞增,
且
,將
代入
,
得
![]()
,
下面證明 當(dāng)
時(shí)存在
,使
.
首先,由不等式
,
,
.
考慮到
,
![]()
.
再令
,可解出一個(gè)根為
,
,
,就取
.
則有
.由零點(diǎn)存在定理及函數(shù)
在
上的單調(diào)性,可知
在
上有唯一的一個(gè)零點(diǎn).
由
,及
的單調(diào)性,可知
在
上有唯一零點(diǎn).
下面證明在
上,存在
,使
,就取
,則
,
,
由不等式
,則
,即
.
根據(jù)零點(diǎn)存在定理及函數(shù)單調(diào)性知
在
有一個(gè)零點(diǎn).
綜上可知,
當(dāng)
時(shí),共有3個(gè)零點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長沙某公司生產(chǎn)一種高科技晶片100片,生產(chǎn)過程中由于受到一些不可抗因素的影響,晶片會(huì)受到一定程度的磨損,因此在生產(chǎn)結(jié)束之后需要由測試人員進(jìn)行相應(yīng)的指標(biāo)測試.指標(biāo)測試情況統(tǒng)計(jì)如表所示:
若
,則稱該晶片為合格品,否則該晶片為劣質(zhì)品.
![]()
(1)試求本次生產(chǎn)過程中該公司生產(chǎn)出合格品的頻率以及數(shù)量;
(2)求這批晶片測試指標(biāo)的平均值;
(3)現(xiàn)按照分層抽樣的方法在測試指標(biāo)在
與
之間的晶片中抽取6個(gè)晶片,再從這6個(gè)晶片中任取2個(gè)晶片進(jìn)入深入分析,求恰有1個(gè)晶片的測試指標(biāo)在
之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
滿足
,對任意
有
恒成立.
(1)求
的解析式;
(2)若
,對于實(shí)數(shù)
,記函數(shù)
在區(qū)間
上的最小值為
,且
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
.
(1)請分別寫出直線
與曲線
的直角坐標(biāo)方程;
(2)已知直線
與曲線
交于
,
兩點(diǎn),設(shè)
,且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)設(shè)
,若對任意的
,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>
的函數(shù)
是奇函數(shù).
(1)求
的值;
(2)判斷函數(shù)
的單調(diào)性,并用定義證明;
(3)當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)幾何體挖去部分后的三視圖如圖所示,若其正視圖和側(cè)視圖都是由三個(gè)邊長為2的正三角形組成,則該幾何體的表面積為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐
中,
平面
,
,點(diǎn)
分別為
的中點(diǎn),設(shè)直線
與平面
交于點(diǎn)
.
![]()
(1)已知平面
平面
,求證:
.
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com