欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

P是雙曲線(xiàn)f上任意一點(diǎn),F(xiàn)是f的一個(gè)焦點(diǎn),l是與F對(duì)應(yīng)的準(zhǔn)線(xiàn),P到l的距離為d,f的準(zhǔn)線(xiàn)間距為L(zhǎng),焦距為c,則下列關(guān)系式中成立的是(    )

(A)>        (B)=       (C)=      (D)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)圓錐曲線(xiàn)上任意兩點(diǎn)連成的線(xiàn)段稱(chēng)為弦.若圓錐曲線(xiàn)上的一條弦垂直于其對(duì)稱(chēng)軸,我們將該弦稱(chēng)之為曲線(xiàn)的垂軸弦.已知橢圓C:
x2
4
+y2=1

(1)過(guò)橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長(zhǎng)度;
(2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線(xiàn)MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請(qǐng)你給出雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)
中相類(lèi)似的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知焦距為4的橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右頂點(diǎn)分別為A、B,橢圓C的右焦點(diǎn)為F,過(guò)F作一條垂直于x軸的直線(xiàn)與橢圓相交于R、S,若線(xiàn)段RS的長(zhǎng)為
10
3

(1)求橢圓C的方程;
(2)設(shè)Q(t,m)是直線(xiàn)x=9上的點(diǎn),直線(xiàn)QA、QB與橢圓C分別交于點(diǎn)M、N,求證:直線(xiàn)MN
必過(guò)x軸上的一定點(diǎn),并求出此定點(diǎn)的坐標(biāo);
(3)實(shí)際上,第(2)小題的結(jié)論可以推廣到任意的橢圓、雙曲線(xiàn)以及拋物線(xiàn),請(qǐng)你對(duì)拋物線(xiàn)y2=2px(p>0)寫(xiě)出一個(gè)更一般的結(jié)論,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出4個(gè)命題:
(1)設(shè)橢圓長(zhǎng)軸長(zhǎng)度為2a(a>0),橢圓上的一點(diǎn)P到一個(gè)焦點(diǎn)的距離是
2
3
a
,P到一條準(zhǔn)線(xiàn)的距離是
8
3
a
,則此橢圓的離心率為
1
4

(2)若橢圓
x2
a2
+
y2
b2
=1
(a≠b,且a,b為正的常數(shù))的準(zhǔn)線(xiàn)上任意一點(diǎn)到兩焦點(diǎn)的距離分別為d1,d2,則|d12-d22|為定值.
(3)如果平面內(nèi)動(dòng)點(diǎn)M到定直線(xiàn)l的距離與M到定點(diǎn)F的距離之比大于1,那么動(dòng)點(diǎn)M的軌跡是雙曲線(xiàn).
(4)過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)與拋物線(xiàn)交于A、B兩點(diǎn),若A、B在拋物線(xiàn)準(zhǔn)線(xiàn)上的射影分別為A1、B1,則FA1⊥FB1
其中正確命題的序號(hào)依次是
(2)(4)
(2)(4)
.(把你認(rèn)為正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省廣州市番禺區(qū)仲元中學(xué)高三(下)2月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

圓錐曲線(xiàn)上任意兩點(diǎn)連成的線(xiàn)段稱(chēng)為弦.若圓錐曲線(xiàn)上的一條弦垂直于其對(duì)稱(chēng)軸,我們將該弦稱(chēng)之為曲線(xiàn)的垂軸弦.已知橢圓C:
(1)過(guò)橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長(zhǎng)度;
(2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線(xiàn)MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請(qǐng)你給出雙曲線(xiàn)中相類(lèi)似的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市松江區(qū)、徐匯區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

圓錐曲線(xiàn)上任意兩點(diǎn)連成的線(xiàn)段稱(chēng)為弦.若圓錐曲線(xiàn)上的一條弦垂直于其對(duì)稱(chēng)軸,我們將該弦稱(chēng)之為曲線(xiàn)的垂軸弦.已知橢圓C:
(1)過(guò)橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長(zhǎng)度;
(2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線(xiàn)MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請(qǐng)你給出雙曲線(xiàn)中相類(lèi)似的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案