欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知一動圓P(圓心為P)經(jīng)過定點Q(
2
,0),并且與定圓C:(x+
2
)
2
+y2=16
(圓心為C)相切.
(1)求動圓圓心P的軌跡方程;
(2)若斜率為k的直線l經(jīng)過圓x2+y2-2x-2y=0的圓心M,交動圓圓心P的軌跡于A、B兩點.是否存在常數(shù)k,使得
CA
+
CB
=2
CM
?如果存在,求出k的值;如果不存在,請說明理由.
(1)設P(x,y),動圓半徑為r,則|PQ|=r.
因為點Q在圓C的內(nèi)部,所以動圓P與定圓C內(nèi)切,
所以|PC|=4-r.
所以|PC|+|PQ|=4>|CQ|=2
2

根據(jù)橢圓的定義,動圓圓心P的軌跡是以C、Q為焦點的橢圓.
因為橢圓的中心在原點,焦點在x軸上,
故可設橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)

由2a=4,2c=2
2
,得a=2,c=
2
,b=
2
,
所以橢圓方程為
x2
4
+
y2
2
=1

所以動圓圓心P的軌跡方程為
x2
4
+
y2
2
=1

(2)假設存在常數(shù)k,使得
CA
+
CB
=2
CM
,
AM
=
MB
,所以M為AB的中點.
圓方程可化為(x-1)2+(y-1)2=2,
所以圓心M為(1,1).
因為直線l經(jīng)過點M,
所以直線l的方程為y-1=k(x-1).
y-1=k(x-1)
x2
4
+
y2
2
=1
,
消去y得(1+2k2)x2+(4k-4k2)x+(2k2-4k-2)=0.
因為點M(1,1)在橢圓
x2
4
+
y2
2
=1
的內(nèi)部,
所以恒有△>0.
設A(x1,y1),B(x2,y2),
x1+x2=
4k2-4k
1+2k2

因為M為AB的中點,
所以
x1+x2
2
=1
,
2k2-2k
1+2k2
=1
,
解得k=-
1
2

所以存在常數(shù)k=-
1
2

使得
CA
+
CB
=2
CM
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2009•越秀區(qū)模擬)已知一動圓P(圓心為P)經(jīng)過定點Q(
2
,0),并且與定圓C:(x+
2
)
2
+y2=16
(圓心為C)相切.
(1)求動圓圓心P的軌跡方程;
(2)若斜率為k的直線l經(jīng)過圓x2+y2-2x-2y=0的圓心M,交動圓圓心P的軌跡于A、B兩點.是否存在常數(shù)k,使得
CA
+
CB
=2
CM
?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省連州市高三8月月考理科數(shù)學試卷(解析版) 題型:解答題

已知一動圓P(圓心為P)經(jīng)過定點,并且與定圓(圓心為C)相切.

(1)求動圓圓心P的軌跡方程;

(2)若斜率為k的直線經(jīng)過圓的圓心M,交動圓圓心P的軌跡于A、B兩點.是否存在常數(shù)k,使得?如果存在,求出的值;如果不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)  已知一動圓P與圓和圓均外切(其中、分別為圓和圓的圓心).

(Ⅰ)求動圓圓心P的軌跡E的方程;

(Ⅱ)若過點的直線l與曲線E有兩個交點A、B,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年廣東省廣州市越秀區(qū)高三摸底數(shù)學試卷(理科)(解析版) 題型:解答題

已知一動圓P(圓心為P)經(jīng)過定點Q(,0),并且與定圓C:(圓心為C)相切.
(1)求動圓圓心P的軌跡方程;
(2)若斜率為k的直線l經(jīng)過圓x2+y2-2x-2y=0的圓心M,交動圓圓心P的軌跡于A、B兩點.是否存在常數(shù)k,使得?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案