分析 本題考查求反函數(shù)的方法,目標(biāo)明確,思路清晰,下手容易,但要解出x,不是很簡(jiǎn)單,需要在等式的兩側(cè)同乘2x,使原函數(shù)的解析式變?yōu)殛P(guān)于2x的二次方程,然后先解出2x再利用指對(duì)互化解出x
解答 解:依題意,由y=$\frac{1}{2}$(2x-2-x)兩邊同乘2x得:
(2x)y=$\frac{1}{2}$[(2x)2-1],即(2x)2-2y•2x-1=0,
解得:2x=y+$\sqrt{{y}^{2}+1}$,或2x=y-$\sqrt{{y}^{2}+1}$,
∵ex>0,
∴2x=y+$\sqrt{{y}^{2}+1}$,
由此得:x=log2(y+$\sqrt{{y}^{2}+1}$)
∴函數(shù)y=$\frac{1}{2}$(2x-2-x)的反函數(shù)是y=log2(x+$\sqrt{{x}^{2}+1}$),(x∈R),
故答案為:y=log2(x+$\sqrt{{x}^{2}+1}$),(x∈R)
點(diǎn)評(píng) 本題思路簡(jiǎn)捷,但解方程y=$\frac{1}{2}$(2x-2-x)得x的過(guò)程是個(gè)難點(diǎn),本題通過(guò)兩側(cè)同乘2x,使原函數(shù)的解析式變?yōu)殛P(guān)于2x的二次方程,方法自然,也是熟悉的路子,得出2x后注意利用2x>0舍去不滿足條件的式子.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 30° | B. | 60° | C. | 30°或150° | D. | 60°或120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 無(wú)數(shù)多個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com