欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.已知函數(shù)f(x)=x2+ax+1,若對(duì)于任意x∈R,都有f(1+x)=f(1-x),求a的值.

分析 令x等于1得到f(0)=f(2)代入求出a的值.

解答 解:(因?yàn)楹瘮?shù)f(x)對(duì)任意x∈R有f(1-x)=f(1+x)恒成立,
所以令x=1得:f(0)=f(2)
即4+2a+1=1,解得a=-2.

點(diǎn)評(píng) 考查學(xué)生理解函數(shù)恒成立的條件,靈活運(yùn)用函數(shù)的性質(zhì),比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)函數(shù)y=f(x)的定義域?yàn)镈,如果存在非零常數(shù)T,對(duì)于任意x∈D,都有f(x+T)=T•f(x),則稱函數(shù)y=f(x)是“似周期函數(shù)”,非零常數(shù)T為函數(shù)y=f(x)的“似周期”.現(xiàn)有下面四個(gè)關(guān)于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”y=f(x)的“似周期”為-1,那么它是周期函數(shù);
②對(duì)于“似周期”為T的函數(shù)y=f(x),若f(T)>0,則f(2015T)>0;
③函數(shù)f(x)=x是“似周期函數(shù)”;
④函數(shù)飛(x)=2-x是“似周期函數(shù)”;
⑤如果函數(shù)f(x)=cosωx是“似周期函數(shù)”,那么“ω=kπ(其中,k是某個(gè)整數(shù))”.
其中是真命題的序號(hào)是①②④⑤(寫出所有滿足條件的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,已知A=$\frac{π}{4}$,b2-a2=$\frac{1}{2}$c2
(1)求tanC的值;
(2)若△ABC的面積為7,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知向量$\overrightarrow{a}$=($\sqrt{2}$coswx,1),$\overrightarrow$=(2sin(wx+$\frac{π}{4}$),-1)(其中$\frac{1}{4}$≤w≤$\frac{3}{2}$),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,且f(x)圖象的一條對(duì)稱軸為x=$\frac{5π}{8}$,求f($\frac{3π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,且$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$垂直,則$\overrightarrow{a}$與$\overrightarrow$的夾角θ為(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.函數(shù)y=x2-ax+3,x∈[0,3]的最大值為3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)方程x2+kx+2=0的兩實(shí)根為p,q,若($\frac{p}{q}$)2+($\frac{q}{p}$)2≤7成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)y=-3x2+2ax-1,x∈[0,1],求y的最大和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)f(x)=$\frac{(x-1)(x-2)…(x-n)}{(x+1)(x+2)…(x+n)}$,若n=6,則f′(1)的值為-$\frac{1}{42}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案