分析 (1)由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
(2)由題意可得cos2x=$\frac{1}{2}$,此時,2x=2kπ±$\frac{π}{3}$,從而求得x的值.
解答 解:(1)結(jié)合函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象,
可得A=2,$\frac{1}{2}$•$\frac{2π}{ω}$=0.5π,∴ω=2.
再結(jié)合五點法作圖可得0+φ=$\frac{π}{2}$,∴φ=$\frac{π}{2}$,即y=2sin(2x+$\frac{π}{2}$)=2cos2x.
(2)令y=1,可得cos2x=$\frac{1}{2}$.此時,2x=2kπ±$\frac{π}{3}$,即x=kπ±$\frac{π}{6}$,k∈Z.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (5,10] | B. | [3,5) | C. | [3,10] | D. | [5,10] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com