分析 取BC的中點(diǎn)E,利用面面垂直的判定定理,證明AE⊥平面BCD,即可.
解答 證明:取BC的中點(diǎn)E,連結(jié)AE,DE,
∵AB=AC=CD=DB=$\sqrt{3}$,
∴AE⊥BC,DE⊥BC,
∵BC=AD=2,
∴AE=$\sqrt{A{C}^{2}-C{E}^{2}}=\sqrt{3-1}=\sqrt{2}$,DE=$\sqrt{C{D}^{2}-C{E}^{2}}=\sqrt{3-1}=\sqrt{2}$,
即AE2+DE2=AD2,
∴AE⊥DE,
∵CE∩DE=E,
∴AE⊥平面BCD,
∵AE?平面ABC,
∴面ABC⊥面BCD
點(diǎn)評(píng) 本題主要考查空間面面垂直的判定,利用三角形的邊長關(guān)系證明AE⊥平面BCD是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 6 | C. | 2($\sqrt{2}$+$\sqrt{3}$) | D. | 2($\sqrt{2}$+$\sqrt{3}$)+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 組號(hào) | 分組 | 頻數(shù) | 頻率 |
| 第1組 | [50,55) | 5 | 0.050 |
| 第2組 | [55,60) | ① | 0.350 |
| 第3組 | [60,65) | 30 | ② |
| 第4組 | [65,70) | 20 | 0.200 |
| 第5組 | [70,75] | 10 | 0.100 |
| 合計(jì) | 100 | 1.000 | |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com