分析 根據(jù)題意可得d<0,前4項(xiàng)為正數(shù),從5項(xiàng)開(kāi)始為負(fù)數(shù),由$\frac{{a}_{n+1}}{{a}_{n}}$>2得到$\left\{\begin{array}{l}{n-2≤3}\\{n-1≥4}\end{array}\right.$,解得即可
解答 解:已知等差數(shù)列{an}滿足:a4>0,a5<0,
則d<0,前4項(xiàng)為正數(shù),從5項(xiàng)開(kāi)始為負(fù)數(shù),
由$\frac{{a}_{n+1}}{{a}_{n}}$>2得$\frac{{a}_{n+1}-2{a}_{n}}{{a}_{n}}$>0,
即$\frac{{a}_{1}+nd-2{a}_{1}-2(n-1)d}{{a}_{1}+(n-1)d}$>0,
∴$\frac{{a}_{1}+nd-2d}{{a}_{1}+(n-1)d}$<0,
∴a1+(n-2)d>0,a1+(n-1)d<0,
∴$\left\{\begin{array}{l}{n-2≤3}\\{n-1≥4}\end{array}\right.$,解得n=5,
故答案為:{5}.
點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)和和通項(xiàng)公式,屬于中檔題
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $f(x)=2sin(2x+\frac{π}{6})$ | B. | $f(x)=2cos(2x+\frac{π}{6})$ | C. | $f(x)=sin(2x+\frac{π}{3})$ | D. | $f(x)=cos(2x+\frac{π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 10 | B. | 15 | C. | 20 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 2 | C. | 4 | D. | 4034 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | b>a>c | B. | a>b>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | 3 | C. | 4 | D. | 9 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com