欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.若方程x3-3ax+2=0(a>0)有三個不同的實根,則實數(shù)a的取值范圍為( 。
A.a>0B.0<a<1C.1<a<3D.a>1

分析 易知a=$\frac{{x}^{3}+2}{3x}$=$\frac{{x}^{2}}{3}$+$\frac{2}{3x}$,從而令f(x)=$\frac{{x}^{2}}{3}$+$\frac{2}{3x}$,從而求導f′(x)=$\frac{2}{3}$$\frac{(x-1)({x}^{2}+x+1)}{{x}^{2}}$,從而判斷函數(shù)的單調(diào)性與極值,從而解得.

解答 解:易知0不是方程x3-3ax+2=0的根,
故3ax=x3+2,
故a=$\frac{{x}^{3}+2}{3x}$=$\frac{{x}^{2}}{3}$+$\frac{2}{3x}$,
令f(x)=$\frac{{x}^{2}}{3}$+$\frac{2}{3x}$,
則f′(x)=$\frac{2}{3}$x-$\frac{2}{3}$$\frac{1}{{x}^{2}}$
=$\frac{2}{3}$$\frac{(x-1)({x}^{2}+x+1)}{{x}^{2}}$,
故當x∈(-∞,0)∪(0,1)時,f′(x)<0;
當x∈(1,+∞)時,f′(x)>0;
故f(x)在(-∞,0),(0,1)上單調(diào)遞減,
在(1,+∞)上單調(diào)遞增;
而$\underset{lim}{x→-∞}$f(x)=+∞,$\underset{lim}{x→{0}^{-}}$f(x)=-∞,$\underset{lim}{x→{0}^{+}}$f(x)=+∞,f(1)=$\frac{1}{3}$+$\frac{2}{3}$=1,
$\underset{lim}{x→+∞}$f(x)=+∞;
故當a>1時,方程a=$\frac{{x}^{3}+2}{3x}$有三個不同的解,
即方程x3-3ax+2=0(a>0)有三個不同的實根,
故選D.

點評 本題考查了導數(shù)的綜合應用及函數(shù)思想的應用,同時考查了構(gòu)造法的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.設函數(shù)f(x)=|x+1|+|x-3|
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)若{x|f(x)≤t2-3t}∩{x|-2≤x≤0}≠∅.求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)=Asin(ωx+$\frac{ωπ}{2}$)(A>0,ω>0)在區(qū)間[-$\frac{3π}{4}$,-$\frac{π}{6}$]上單調(diào)遞增,則ω的最大值是( 。
A.$\frac{3}{2}$B.2C.$\frac{12}{7}$D.$\frac{12}{11}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若cos(α+β)=$\frac{4}{5}$,cos(α-β)=-$\frac{4}{5}$,$\frac{3π}{2}<α+β<2π$,$\frac{π}{2}<α-β<π$,則sin2β=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設P1P2P3…Pn是圓的內(nèi)接正n邊形,O為圓心,求證:$\overrightarrow{O{P}_{1}}$$+\overrightarrow{O{P}_{2}}$$+\overrightarrow{O{P}_{3}}$+…+$\overrightarrow{O{P}_{n}}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設點M(x0,x0+$\sqrt{2}$),若在圓O:x2+y2=1上存在點N,使得∠OMN=45°,則x0的取值范圍是( 。
A.[-$\sqrt{2}$,0]B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-2,2]D.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.正四棱柱ABCD-A1B1C1D1底面邊長為$\sqrt{3}$,高為1,O為下底面的中心.
求:(1)求異面直線AB與CD1所成角的大;
(2)正四棱錐O-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.與向量$\overrightarrow{a}$=(4,-3)垂直的單位向量是($\frac{3}{5}$,$\frac{4}{5}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若復數(shù)z=i-2i2+3i3,則|z|=(  )
A.6B.2$\sqrt{2}$C.4D.2

查看答案和解析>>

同步練習冊答案