欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.計(jì)算下列各排列數(shù):
(1)a,b,c,d,e中取出4個(gè)元素的排列中,a不在首位的所有排列;
(2)a,b,c,d,e中取出4個(gè)元素的排列中,a不在首位且b不在末位的所有排列.

分析 (1)先排首位,再排其它,(2)分兩類,第一類,若a在末位,第二類,若a不在末位,問題得以解決.

解答 解:(1)先排首位,再排其它,故有A41A44=96種,
(2)分兩類,第一類,若a在末位,有A44=24種,
第二類,若a不在末位,有A31A31A33=54種,根據(jù)分類計(jì)數(shù)原理,共有24+54=78種.

點(diǎn)評(píng) 本題考查了簡單的排列問題,關(guān)鍵是特殊元素優(yōu)先安排,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)在R上是減函數(shù),若a=f(log${\;}_{\frac{1}{2}}$8),b=f[($\frac{1}{2}$)${\;}^{\frac{1}{3}}$],c=f(2${\;}^{\frac{1}{2}}$).則(  )
A.a<b<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.教材器有介紹:圓x2+y2=r2上的點(diǎn)(x0,y0)處的切線方程為x0x+y0y=r2,我們將其結(jié)論推廣:橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的點(diǎn)(x0,y0)處的切線方程為$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{^{2}}$=1,在解本題時(shí)可以直接應(yīng)用.已知,直線x-y+$\sqrt{3}$=0與橢圓E$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1(a>1)有且只有一個(gè)公共點(diǎn)
(1)求a的值;
(2)設(shè)O為坐標(biāo)原點(diǎn),過橢圓E上的兩點(diǎn)A、B分別作該橢圓的兩條切線l1,l2,且l1與l2交于點(diǎn)M(2,m)
①設(shè)m≠0,直線AB、OM的斜率分別為k1,k2,求證:k1k2為定值
②設(shè)m∈R,求△OAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)x>5,P=$\sqrt{x-4}$-$\sqrt{x-5}$,Q=$\sqrt{x-2}$-$\sqrt{x-3}$,則P與Q的大小關(guān)系是P<Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知O是坐標(biāo)原點(diǎn),實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y-1≤0}\\{x+y-3≤0}\\{x≥1}\end{array}\right.$且點(diǎn)A,B的坐標(biāo)分別為(1,y),(2,$\frac{1}{x}$),則z=$\overrightarrow{OA}$$•\overrightarrow{OB}$的取值范圍為[5,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)中,F(xiàn)2為其右焦點(diǎn),A1為其左頂點(diǎn),點(diǎn)B(0,b),若以A1F2為直徑的圓經(jīng)過A1B的中點(diǎn),則此雙曲線的離心率為1+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.畫出不等式組$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$表示的平面區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:函數(shù)y=2-ax+1的圖象恒過定點(diǎn)(1,2);命題q:若函數(shù)y=f(x-1)為偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱,則下列命題為真命題的是( 。
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若正數(shù)x,y滿足4x+9y=xy,則x+y的最小值為( 。
A.16B.20C.25D.36

查看答案和解析>>

同步練習(xí)冊(cè)答案