欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.
分析:(1)先求導(dǎo)函數(shù)f′(x),把x=1代入f′(x)中算出f′(1)即可得到切線的斜率,從而求出切線;
(2)確定函數(shù)的定義域,求導(dǎo)函數(shù),利用導(dǎo)數(shù)的正負(fù),分類討論,即可求得函數(shù)f(x)的單調(diào)性.
解答:解(1)當(dāng)a=0時(shí),f(x)=-2x+4lnx,
從而f′(x)=-2+
4
x
,其中x>0.                        
所以f′(1)=2.
又切點(diǎn)為(1,-2),
所以所求切線方程為y+2=2(x-1),即2x-y-4=0.    
(2)因?yàn)閒(x)=ax2-(4a+2)x+4lnx,
所以f′(x)=2ax-(4a+2)+
4
x
=
2ax2-(4a+2)x+4
x
=
2(ax-1)(x-2)
x
,其中x>0.
①當(dāng)a=0時(shí),f′(x)=-
2(x-2)
x
,x>0.
由f′(x)>0得,0<x<2,所以函數(shù)f(x)的單調(diào)增區(qū)間是(0,2);單調(diào)減區(qū)間是(2,+∞);
②當(dāng)0<a<
1
2
時(shí),因?yàn)?span id="siuw468" class="MathJye">
1
a
>2,由f′(x)>0,得x<2或x>
1
a

所以函數(shù)f(x)的單調(diào)增區(qū)間是(0,2)和(
1
a
,+∞);單調(diào)減區(qū)間為(2,
1
a
);
③當(dāng)a=
1
2
時(shí),f′(x)=
(x-2)2
x
≥0,且僅在x=2時(shí),f′(x)=0,
所以函數(shù)f(x)的單調(diào)增區(qū)間是(0,+∞);
④當(dāng)a>
1
2
時(shí),因0<
1
a
<2,由f′(x)>0,得0<x<
1
a
或x>2,
所以函數(shù)f(x)的單調(diào)增區(qū)間是(0,
1
a
)和(2,+∞);單調(diào)減區(qū)間為(
1
a
,2).
綜上,
當(dāng)a=0時(shí),f(x)的單調(diào)增區(qū)間是(0,2),單調(diào)減區(qū)間是(2,+∞);
當(dāng)0<a<
1
2
時(shí),f(x)的單調(diào)增區(qū)間是(0,2)和(
1
a
,+∞),減區(qū)間為(2,
1
a
);
當(dāng)a=
1
2
時(shí),f(x)的單調(diào)增區(qū)間是(0,+∞);
當(dāng)a>
1
2
時(shí),f(x)的單調(diào)增區(qū)間是(0,
1
a
)和(2,+∞),減區(qū)間為(
1
a
,2).
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)區(qū)間,考查分類討論的數(shù)學(xué)思想,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案