欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知定點,是圓上任意一點,點關于點的對稱點為,線段的中垂線與直線相交于點,則點的軌跡是

A.橢圓             B.雙曲線           C.拋物線           D.圓

 

【答案】

B

【解析】

試題分析:由N是圓O:x2+y2=1上任意一點,可得ON=1,且N為MF1的中點可求MF2,結合已知由垂直平分線的性質可得PM=PF1,從而可得|PF2-PF1|=|PF2-PM|=MF2=2為定值,由雙曲線的定義可得點P得軌跡是以F1,F(xiàn)2為焦點的雙曲線解:連接ON,由題意可得ON=1,且N為MF1的中點∴MF2=2,∵點F1關于點N的對稱點為M,線段F1M的中垂線與直線F2M相交于點P,由垂直平分線的性質可得PM=PF1,∴|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,由雙曲線的定義可得點P得軌跡是以F1,F(xiàn)2為焦點的雙曲線,故選:B

考點:雙曲線的定義

點評:本題以圓為載體,考查了利用雙曲線的定義判斷圓錐曲線的類型的問題,解決本題的關鍵是由N為圓上一點可得ON=1,結合N為MF1的中點,由三角形中位線的性質可得MF2=2,還要靈活應用垂直平分線的性質得到解決本題的第二個關鍵點|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,從而根據圓錐曲線的定義可求解,體現(xiàn)了轉化思想的應用.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011屆山西大學附中高三第二學期高三第一次模擬測試數(shù)學試卷 題型:解答題

(12分)
已知定點,B是圓(C為圓心)上的動點,AB的垂直平分線與BC交于點E.
(1)求動點E的軌跡方程;
(2)設直線與E的軌跡交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:OPQ面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年山西大學附中高三第二學期高三第一次模擬測試數(shù)學試卷 題型:解答題

(12分)

已知定點,B是圓(C為圓心)上的動點,AB的垂直平分線與BC交于點E.

   (1)求動點E的軌跡方程;

           (2)設直線與E的軌跡交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:OPQ面積的最大值及此時直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆河南省高二下學期期末考試數(shù)學 題型:解答題

(本小題滿分12分)

已知定點,B是圓(C為圓心)上的動點,AB的垂直平分線與BC交于點E。

(1)求動點E的軌跡方程;

(2)設直線與E的軌跡交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:OPQ面積的最大值及此時直線的方程。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(12分)已知定點,B是圓(C為圓心)上的動點,AB的垂直平分線與BC交于點E.

(1)求動點E的軌跡方程;

(2)設直線與E的軌跡交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:OPQ面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年黑龍江省鶴崗一中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

已知定點,B是圓(C為圓心)上的動點,AB的垂直平分線與BC交于點E.
(1)求動點E的軌跡方程;
(2)設直線l:y=kx+m(k≠0,m>0)與E的軌跡交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線l的方程.

查看答案和解析>>

同步練習冊答案