【題目】如圖,所有棱長都相等的直四棱柱
中,
中點為
.
![]()
(1)求證:
平面
;
(2)若
,求二面角
的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求曲線
在點
處的切線方程;
(2)若函數(shù)
在其定義域內(nèi)為增函數(shù),求
的取值范圍;
(3)在(2)的條件下,設函數(shù)
,若在
上至少存在一點
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知菱形
中,對角線
與
相交于一點
,
,將
沿著
折起得
,連接
.
![]()
(1)求證:平面
平面
;
(2)若點
在平面
上的投影恰好是
的重心,求直線
與底面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)=
是奇函數(shù).
(1)求f(x)的解析式;
(2)若對任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知☉O:x2+y2=1和定點A(2,1),由☉O外一點P(a,b)向☉O引切線PQ,切點為Q,且滿足|PQ|=|PA|.
![]()
(1)求實數(shù)a,b間滿足的等量關(guān)系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點,試求半徑取最小值時☉P的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
,函數(shù)
的圖象在點
處的切線平行于
軸.
(1)求
的值;
(2)求函數(shù)
的極小值;
(3)設斜率為
的直線與函數(shù)
的圖象交于兩點
,
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
且
.
(I)若
,求函數(shù)
的單調(diào)區(qū)間;(其中
是自然對數(shù)的底數(shù))
(II)設函數(shù)
,當
時,曲線
與
有兩個交點,求
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com