(1)要使平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤最大,應(yīng)生產(chǎn)多少件產(chǎn)品?
思路分析:本題已直接給出了函數(shù)關(guān)系式,可直接求解.該題不僅可以用導(dǎo)數(shù)方法來求,也可以利用重要不等式來解.
解:(1)設(shè)平均成本為y元,則y=
+200+
(x>0).
y′=(
)′=
.
令y′=0,得x1=1 000,x2=-1 000(舍去).
當(dāng)在x=1 000附近左側(cè)時,y′<0;當(dāng)在x=1 000附近右側(cè)時,y′>0,故當(dāng)x=1 000時,y取得極小值.由于函數(shù)只有一個點使y′=0,且函數(shù)在該點有極小值,那么函數(shù)在該點取得最小值,因此要使成本最低,應(yīng)生產(chǎn)1 000件產(chǎn)品.
(2)利潤函數(shù)L=500x-(25 000+200x+
)=300x-25 000-
.
∴L′=(300x-25 000-
)′=300-
.
令L′=0,得x=6 000,當(dāng)x在6 000附近左側(cè)時,L′>0;
當(dāng)x在6 000附近右側(cè)時,L′<0,
故當(dāng)x=6 000時,L取得最大值.
由于函數(shù)只有一個使L′=0的點,且函數(shù)在該點有極大值,那么函數(shù)在該點取得最大值.因此,要使利潤最大,應(yīng)生產(chǎn)6 000件產(chǎn)品.
科目:高中數(shù)學(xué) 來源:四川省樂山市高中2012屆高三第二次調(diào)查研究考試數(shù)學(xué)理科試題 題型:044
某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都是經(jīng)過第一和第二工序加工而成,兩道工序的加工結(jié)果相互獨立,每道工序的加工結(jié)果均有
A、B兩個等級.對每種產(chǎn)品,兩道工序的加工結(jié)果都為A級時,產(chǎn)品為一等品,其余均為二等品.(1)已知甲、乙兩種產(chǎn)咼每一道工序的加工結(jié)果為A級的概率為表(1)所示,分別求生產(chǎn)出甲、乙產(chǎn)品為一等品的概率P甲,P乙;
(2)已知一件產(chǎn)品的利潤如表(2)所示,用ξ、η分別表示一件甲、乙產(chǎn)品的利潤,在(1)的條件下求Eξ、Eη
(3)已知生產(chǎn)一件產(chǎn)品需用的工人數(shù)和資金額如表(3)所示,該工廠有工人40名,可用資金60萬元.設(shè)x、y分別表示生產(chǎn)甲、乙產(chǎn)品的數(shù)量,在(2)的條件下,x:y為何值時,z=xEξ+yEη最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都是經(jīng)過第一和第二工序加工而成,兩道工序的加工結(jié)果相互獨立,每道工序的加工結(jié)果均有A、B兩個等級.對每種產(chǎn)品,兩道工序的加工結(jié)果都為A級時,產(chǎn)品為一等品,其余均為二等品.
(1)已知甲、乙兩種產(chǎn)品每一道工序的加工結(jié)
果為A級的概率如表一所示,分別求生產(chǎn)
出的甲、乙產(chǎn)品為一等品的概率P甲、P乙;
(2)已知一件產(chǎn)品的利潤如表二所示,用ξ、
η分別表示一件甲、乙產(chǎn)品的利潤,在
(I)的條件下,求ξ、η的分布列及
Eξ、Eη;
(3)已知生產(chǎn)一件產(chǎn)品需用的工人數(shù)和資金額
如表三所示.該工廠有工人40名,可用資.
|
|
值時,
最大?最大值是多少?
(解答時須給出圖示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:汕頭市2009-2010學(xué)年度第二學(xué)期高三級數(shù)學(xué)綜合測練題(理三) 題型:解答題
某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都是經(jīng)過第一和第二工序加工而成,兩道工序的加工結(jié)果相互獨立,每道工序的加工結(jié)果均有A、B兩個等級.對每種產(chǎn)品,兩道工序的加工結(jié)果都為A級時,產(chǎn)品為一等品,其余均
為二等品.
(1)已知甲、乙兩種產(chǎn)品每一道工序的加工結(jié)
果為A級的概率如表一所示,分別求生產(chǎn)
出的甲、乙產(chǎn)品為一等品的概率P甲、P乙;
(2)已知一件產(chǎn)品的利潤如表二所示,用ξ、
η分別表示一件甲、乙產(chǎn)品的利潤,在
(1)的條件下,求ξ、η的分布列及Eξ、
Eη;
(3)已知生產(chǎn)一件產(chǎn)品需用的工人數(shù)和資金額
如表三所示.該工廠有工人40名,可用資.
|
|
值時,
最大?最大值是多少?
(解答時須給出圖示)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com