分析 (I)運(yùn)用二倍角公式和兩角和的正弦公式,化簡f(x),再由特殊角的三角函數(shù)值,可得A;
(Ⅱ)運(yùn)用正弦定理和余弦定理,結(jié)合面積公式,解方程,即可得到a的值.
解答 解:(I)f(x)=2cos2x+2$\sqrt{3}$sinxcosx-1
=$\sqrt{3}$sin2x+cos2x=2($\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x)
=2sin(2x+$\frac{π}{6}$),
由f(A)=1,得到2sin(2A+$\frac{π}{6}$)=1,
即sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
∵A為三角形的內(nèi)角,
∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,即A=$\frac{π}{3}$;
(Ⅱ)利用正弦定理化簡sinB=3sinC得:b=3c,
∵S△ABC=$\frac{1}{2}$bcsinA=$\frac{3\sqrt{3}}{4}$,
即$\frac{\sqrt{3}}{4}$×3c2=$\frac{3\sqrt{3}}{4}$,
解得:c=1,
∴b=3,
由余弦定理得:a2=b2+c2-2bccosA=9+1-3=7,
則a=$\sqrt{7}$.
點(diǎn)評 本題考查正弦定理和余弦定理以及面積公式的運(yùn)用,同時考查二倍角公式和兩角和的正弦公式的運(yùn)用,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{11}{20}$ | B. | $\frac{41}{78}$ | C. | $\frac{43}{82}$ | D. | $\frac{23}{42}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com