【題目】[2018·郴州期末]已知三棱錐
中,
垂直平分
,垂足為
,
是面積為
的等邊三角形,
,
,
平面
,垂足為
,
為線段
的中點(diǎn).
(1)證明:
平面
;
(2)求
與平面
所成的角的正弦值.
![]()
【答案】(1)見解析(2)![]()
【解析】試題分析:
(1)要證線面垂直,一般先證線線垂直,這可由
和
是等邊三角形及O是AB中點(diǎn)易得;
(2)要求直線與平面所成的角,一種方法作出線面角的平面角,然后解三角形得結(jié)論,也可建立空間直角坐標(biāo)系,如解析中的坐標(biāo)系,寫出各點(diǎn)坐標(biāo),求出直線的方向向量與平面的法向量,由方向向量與法向量的夾角與直線和平面所成角互余可得.
試題解析:
(1)證明:∵
垂直平分
,垂足為
,∴
.
∵
,∴
是等邊三角形.
又
是等邊三角形.
∴
是
中點(diǎn),
,
.
∵
,
,
平面
,∴
平面
.
(2)解:由(1)知
,平面
平面
.
因?yàn)槠矫?/span>
與平面
的交線為
.
∵
平面
.∴
.
又等邊
面積為
,∴![]()
又
,∴
是
中點(diǎn).
如圖建立空間直角坐標(biāo)系
,
![]()
,
,
,![]()
所以
,
,![]()
設(shè)平面
的法向量為
,則
,取
,則
,
.
即平面
的一個(gè)法向量為
.
所以
與平面
所成角的正弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知拋物線
的焦點(diǎn)F在直線
上。
(Ⅰ)求拋物線C的方程。
(Ⅱ)過點(diǎn)
做互相垂直的兩條直線
與曲線C交于A,B兩點(diǎn),
與曲線C交于E,F兩點(diǎn),線段AB、EF的中點(diǎn)分別為M、N,求證:直線MN過定點(diǎn)P,并求出定點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為打贏打好脫貧攻堅(jiān)戰(zhàn),實(shí)現(xiàn)建檔立卡貧困人員穩(wěn)定增收,某地區(qū)把特色養(yǎng)殖確定為脫貧特色主導(dǎo)產(chǎn)業(yè),助力鄉(xiāng)村振興.現(xiàn)計(jì)劃建造一個(gè)室內(nèi)面積為
平方米的矩形溫室大棚,并在溫室大棚內(nèi)建兩個(gè)大小、形狀完全相同的矩形養(yǎng)殖池,其中沿溫室大棚前、后、左、右內(nèi)墻各保留
米寬的通道,兩養(yǎng)殖池之間保留2米寬的通道.設(shè)溫室的一邊長(zhǎng)度為
米,如圖所示.
![]()
(1)將兩個(gè)養(yǎng)殖池的總面積
表示
為的函數(shù),并寫出定義域;
(2)當(dāng)溫室的邊長(zhǎng)
取何值時(shí),總面積
最大?最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點(diǎn)M為棱AB的中點(diǎn),AB=2,AD=
,∠BAD=90°.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)求異面直線BC與MD所成角的余弦值;
(Ⅲ)求直線CD與平面ABD所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求
的單調(diào)區(qū)間;
(2)若
圖像上任意一點(diǎn)
處的切線的斜率
,求
的取值范圍;
(3)若對(duì)于區(qū)間
上任意兩個(gè)不相等的實(shí)數(shù)
都有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的左右焦點(diǎn)分別為
,
,若橢圓上一點(diǎn)
滿足
,且橢圓
過點(diǎn)
,過點(diǎn)
的直線
與橢圓
交于兩點(diǎn)
.
(1)求橢圓
的方程;
(2)過點(diǎn)
作
軸的垂線,交橢圓
于
,求證:
,
,
三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-
中,
平面ABC,D,E,F,G分別為
,AC,
,
的中點(diǎn),AB=BC=
,AC=
=2.
![]()
(Ⅰ)求證:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)證明:直線FG與平面BCD相交.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以“你我中國(guó)夢(mèng),全民建小康”為主題、“社會(huì)主義核心價(jià)值觀”為主線,為了了解
兩個(gè)地區(qū)的觀眾對(duì)2018年韓國(guó)平昌冬奧會(huì)準(zhǔn)備工作的滿意程度,對(duì)
地區(qū)的100名觀眾進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下:
![]()
在被調(diào)查的全體觀眾中隨機(jī)抽取1名“非常滿意”的人是
地區(qū)的概率為0.45,且
.
(Ⅰ)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問卷調(diào)查,則應(yīng)抽取“滿意”的
地區(qū)的人數(shù)各是多少?
(Ⅱ)在(Ⅰ)抽取的“滿意”的觀眾中,隨機(jī)選出3人進(jìn)行座談,求至少有兩名是
地區(qū)觀眾的概率?
(Ⅲ)完成上述表格,并根據(jù)表格判斷是否有
的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系?
附:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列
滿足:對(duì)于任意
均為數(shù)列
中的項(xiàng),則稱數(shù)列
為“
數(shù)列”.
(1)若數(shù)列
的前
項(xiàng)和
,求證:數(shù)列
為“
數(shù)列”;
(2)若公差為
的等差數(shù)列
為“
數(shù)列”,求
的取值范圍;
(3)若數(shù)列
為“
數(shù)列”,
,且對(duì)于任意
,均有
,求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com