已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.
分析:(1)不等式f(x)≤3就是|x-a|≤3,求出它的解集,與{x|-1≤x≤5}相同,求實數(shù)a的值;
(2)在(1)的條件下,f(x)+f(x+5)≥m對一切實數(shù)x恒成立,根據(jù)f(x)+f(x+5)的最小值≥m,可求實數(shù)m的取值范圍.
解答:解:(1)由f(x)≤3得|x-a|≤3,
解得a-3≤x≤a+3.
又已知不等式f(x)≤3的解集為{x|-1≤x≤5},
所以
解得a=2.(6分)
(2)當a=2時,f(x)=|x-2|.
設g(x)=f(x)+f(x+5),
于是
g(x)=|x-2|+|x+3|= | | -2x-1,x<-3 | | 5 -3≤x≤2 | | 2x+1 x>2 |
| |
所以當x<-3時,g(x)>5;
當-3≤x≤2時,g(x)=5;
當x>2時,g(x)>5.
綜上可得,g(x)的最小值為5.
從而,若f(x)+f(x+5)≥m
即g(x)≥m對一切實數(shù)x恒成立,則m的取值范圍為(-∞,5].(12分)
點評:本題考查函數(shù)恒成立問題,絕對值不等式的解法,考查轉化思想,是中檔題,