欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn+1=4an+2(n≥1,n∈N*).
(1)設(shè)bn=an+1-2an,求bn;
(2)設(shè)cn=$\frac{1}{{a}_{n+1}-2{a}_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)設(shè)dn=$\frac{{a}_{n}}{{2}^{n}}$,求d2010

分析 (1)求得a2=3a1+2=5,當(dāng)n>1時(shí),將n換為n-1,兩式相減,再由條件可得bn=2bn-1,運(yùn)用等比數(shù)列的通項(xiàng)公式,即可得到所求;
(2)求出cn,運(yùn)用等比數(shù)列的求和公式,即可得到所求;
(3)由(1)可得an+1-2an=3•2n-1;即有$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=$\frac{3}{4}$,可得{dn}為等差數(shù)列,由等差數(shù)列的通項(xiàng)公式,即可得到所求.

解答 解:(1)a1=1,Sn+1=4an+2,
可得a2+a1=4a1+2,即有a2=3a1+2=5,
當(dāng)n>1時(shí),Sn=4an-1+2,
相減可得an+1=4an-4an-1,
即有an+1-2an=2(an-2an-1),
即為bn=2bn-1,b1=a2-2a1=5-2=3,
則bn=b1qn-1=3•2n-1;
(2)cn=$\frac{1}{{a}_{n+1}-2{a}_{n}}$=$\frac{1}{3}$•($\frac{1}{2}$)n-1,
前n項(xiàng)和Tn=$\frac{\frac{1}{3}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=$\frac{2}{3}$-$\frac{1}{3}$•($\frac{1}{2}$)n-1
(3)由(1)可得an+1-2an=3•2n-1;
即有$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=$\frac{3}{4}$,
即為dn+1-dn=$\frac{3}{4}$,
即有dn=d1+$\frac{3}{4}$(n-1)=$\frac{1}{2}$+$\frac{3}{4}$(n-1)=$\frac{3n-1}{4}$,
則d2010=$\frac{3×2010-1}{4}$=$\frac{6029}{4}$.

點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,注意運(yùn)用下標(biāo)相減法和構(gòu)造法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)P為拋物線C:x2=2py(p>0)上任意一點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M(0,m),若|PM|≥|OM|恒成立,則實(shí)數(shù)m的取值范圍為( 。
A.(-∞,$\frac{p}{4}$]B.(-∞,$\frac{p}{2}$]C.(-∞,p]D.(-∞,2p]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=x-x2,則當(dāng)x∈(0,+∞)時(shí),f(x)=-x-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知等比數(shù)列{an}是遞增的等比數(shù)列,且a1+a3=34,a2a4=64,設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,則Sn=$\frac{2}{3}$(4n-1),若bn=$\frac{4{a}_{n}}{{S}_{n}{S}_{n-1}}$,則數(shù)列{bn}的前n項(xiàng)和Tn=$\frac{2({4}^{n}-4)}{{4}^{n}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.圓(x-1)2+(y+1)2=2與圓x2+y2=1的公共弦所在直線方程為2x-2y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若不共線向量$\overrightarrow{OA}$,$\overrightarrow{OB}$滿足|$\overrightarrow{OA}$|=2|$\overrightarrow{OB}$|,存在實(shí)數(shù)λ使得$\overrightarrow{OC}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,且$\overrightarrow{OC}$•$\overrightarrow{OA}$=2$\overrightarrow{OB}$•$\overrightarrow{OC}$,則$\frac{|\overrightarrow{OC}|}{|\overrightarrow{OA}|}$的取值范圍為( 。
A.(0,$\frac{2}{3}$)B.($\frac{2}{3}$,$\frac{4}{3}$)C.(0,$\frac{4}{3}$)D.($\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|ax2-2x+1|,x∈[0,4].
(1)當(dāng)a<0時(shí),求f(x)≥$\frac{1}{2}$的解集;
(2)求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將函數(shù)f(x)=sin2x圖象向右平移φ(φ>0)個(gè)單位得到函數(shù)g(x)的圖象,若對(duì)任意的x∈R有g(shù)(x)+g($\frac{π}{3}$)≥0,則φ的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.關(guān)于x的不等式a•4x+2x+1>0恒成立,常數(shù)a的取值范圍[$\frac{1}{4}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案