欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)f(x)=(a≥0),f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).
(Ⅰ)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線(xiàn)y=f(x)在A點(diǎn)處的切線(xiàn)方程是y=3x-3,求a,b的值;
(Ⅱ)若函數(shù)g(x)=e-ax•f′(x),求函數(shù)g(x)的單調(diào)區(qū)間.
【答案】分析:(I)根據(jù)曲線(xiàn)y=f(x)在A點(diǎn)處的切線(xiàn)方程是y=3x-3,建立關(guān)于a和b的方程組,解之即可;
(II)先求出函數(shù)g(x)的解析式,然后討論a的正負(fù),利用導(dǎo)數(shù)的符號(hào)研究函數(shù)的單調(diào)性,根據(jù)fˊ(x)>0和fˊ(x)<0求出函數(shù)g(x)的單調(diào)區(qū)間即可.
解答:解:(Ⅰ)∵f(x)=(a≥0),
∴f'(x)=x2+ax+1.(1分)
∵f(x)在(1,0)處切線(xiàn)方程為y=3x-3,
,(3分)
∴a=1,b=-.(各1分)(5分)
(Ⅱ)g(x)=e-ax•f′(x)=,x∈R.
g'(x)=-x[ax+(a2-2)e-ax].(7分)
①當(dāng)a=0時(shí),g'(x)=2x,
x(-∞,0)         0       (0,+∞)
g'(x)-+
g(x)減函數(shù)極小值增函數(shù)
g(x)的單調(diào)遞增區(qū)間為(0,+∞),單調(diào)遞減區(qū)間(-∞,0).(9分)
②當(dāng)a>0時(shí),令g'(x)=0,得x=0或x=(10分)
(ⅰ)當(dāng)>0,即0<a<時(shí),
x(-∞,0)(0,,+∞)
g'(x)-+-
g(x)減函數(shù)極小值增函數(shù)極大值減函數(shù)
g(x)的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間(-∞,0),(-,+∞);(11分)
(ⅱ)當(dāng)=0,即a=時(shí),g'(x)=-2x2e-2x≤0,
故g(x)在(-∞,+∞)單調(diào)遞減;(12分)
(ⅲ)當(dāng)<0,即a>時(shí),
x(-∞,,0)(0,+∞)
g'(x)-+-
g(x)減函數(shù)極小值增函數(shù)極大值減函數(shù)
g(x)在(,0)上單調(diào)遞增,在(0,+∞),(-∞,)上單調(diào)遞(13分)
綜上所述,當(dāng)a=0時(shí),g(x)的單調(diào)遞增區(qū)間為(0,+∞),單調(diào)遞減區(qū)間(-∞,0);
當(dāng)0<a<時(shí),g(x)的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(-∞,0),
當(dāng)a=時(shí),g(x)的單調(diào)遞減區(qū)間為(-∞,+∞);
當(dāng)a>時(shí),g(x)的單調(diào)遞增區(qū)間為(,0),單調(diào)遞減區(qū)間為(0,+∞),(-∞,).(“綜上所述”要求一定要寫(xiě)出來(lái))
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,同時(shí)考查分類(lèi)討論的思想,計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線(xiàn)x=
π
6
對(duì)稱(chēng),求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線(xiàn)l與直線(xiàn)3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案