【題目】已知橢圓
的左、右焦點(diǎn)為
的坐標(biāo)滿足圓
方程
,且圓心
滿足
.
(1)求橢圓
的方程;
(2)過點(diǎn)
的直線
交橢圓
于
、
兩點(diǎn),過
與
垂直的直線
交圓
于
、
兩點(diǎn),
為線段
中點(diǎn),若
的面積
,求
的值.
【答案】(1)
,(2)
.
【解析】
(1)根據(jù)
的坐標(biāo)滿足圓
方程
可得到
的值,圓心
滿足
,故圓心
在橢圓上,將其代入可得橢圓方程;
(2)由題意可知,
與直線
平行,故點(diǎn)
到直線
的距離即為點(diǎn)
到直線
的距離,從而可以用
表示出點(diǎn)
到直線
的距離,再用
計(jì)算出弦長
,從而得出關(guān)于
的方程,進(jìn)而得出結(jié)果.
解:(1)因?yàn)?/span>
的坐標(biāo)滿足圓
方程
,
故當(dāng)
時(shí),
,
即
,故
,
因?yàn)閳A心
滿足
,
所以點(diǎn)
在橢圓上,
故有
,
聯(lián)立方程組
,解得
,
所以橢圓方程為
;
(2)因?yàn)橹本
交圓
于
、
兩點(diǎn),
為線段
中點(diǎn),
所以
與直線
垂直,
又因?yàn)橹本
與直線
垂直,
所以
與直線
平行,
所以點(diǎn)
到直線
的距離即為點(diǎn)
到直線
的距離,
即點(diǎn)
到直線
的距離為
,
設(shè)點(diǎn)![]()
聯(lián)立方程組
,
解得
,
由韋達(dá)定理可得
,
,
所以
,
所以
的面積為
,
所以
,
即
,
兩邊同時(shí)平方,化簡得,![]()
解得
或
(舍)
故
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
,
.
(1)若
是
的充分不必要條件,求實(shí)數(shù)
的取值范圍;
(2)若
,“
”為真命題,“
”為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面
平面
,△
為等腰直角三角形,
,四邊形
為直角梯形,
,
,
,
,![]()
(1)求證:
平面
;
(2)求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解高一新生的體質(zhì)健康狀況,對(duì)學(xué)生的體質(zhì)進(jìn)行了測試. 現(xiàn)從男、女生中各隨機(jī)抽取
人,把他們的測試數(shù)據(jù),按照《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》整理如下表. 規(guī)定:數(shù)據(jù)≥
,體質(zhì)健康為合格.
等級(jí) | 數(shù)據(jù)范圍 | 男生人數(shù) | 男生平均分 | 女生人數(shù) | 女生平均分 |
優(yōu)秀 |
|
|
|
|
|
良好 |
|
|
|
|
|
及格 |
|
|
|
|
|
不及格 |
|
|
|
|
|
總計(jì) | -- |
|
|
|
|
(I)從樣本中隨機(jī)選取一名學(xué)生,求這名學(xué)生體質(zhì)健康合格的概率;
(II)從男生樣本和女生樣本中各隨機(jī)選取一人,求恰有一人的體質(zhì)健康等級(jí)是優(yōu)秀的概率;
(III)表中優(yōu)秀、良好、及格、不及格四個(gè)等級(jí)的男生、女生平均分都接近(二者之差的絕對(duì)值不大于
),但男生的總平均分卻明顯高于女生的總平均分.研究發(fā)現(xiàn),若去掉四個(gè)等級(jí)中一個(gè)等級(jí)的數(shù)據(jù),則男生、女生的總平均分也接近,請(qǐng)寫出去掉的這個(gè)等級(jí).(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,
是某海灣旅游區(qū)的一角,其中
,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定在直線海岸
和
上分別修建觀光長廊
和AC,其中
是寬長廊,造價(jià)是
元/米,
是窄長廊,造價(jià)是
元/米,兩段長廊的總造價(jià)為120萬元,同時(shí)在線段
上靠近點(diǎn)
的三等分點(diǎn)
處建一個(gè)觀光平臺(tái),并建水上直線通道
(平臺(tái)大小忽略不計(jì)),水上通道的造價(jià)是
元/米.
(1) 若規(guī)劃在三角形
區(qū)域內(nèi)開發(fā)水上游樂項(xiàng)目,要求
的面積最大,那么
和
的長度分別為多少米?
(2) 在(1)的條件下,建直線通道
還需要多少錢?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十八大以來,我國新能源產(chǎn)業(yè)迅速發(fā)展.以下是近幾年某新能源產(chǎn)品的年銷售量數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
新能源產(chǎn)品年銷售 | 1.6 | 6.2 | 17.7 | 33.1 | 55.6 |
(1)請(qǐng)畫出上表中年份代碼
與年銷量
的數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷.
與
中哪一個(gè)更適宜作為年銷售量
關(guān)于年份代碼
的回歸方程類型;
(2)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立
關(guān)于
的回歸方程,并預(yù)測2019年某新能源產(chǎn)品的銷售量(精確到0.01).
參考公式:
,
.
參考數(shù)據(jù):
,
,
,
,
,
,
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】知函數(shù)
.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)設(shè)函數(shù)
,若
是
的唯一極值點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
,M為直線
上任意一點(diǎn),過點(diǎn)M作拋物線C的兩條切線MA,MB,切點(diǎn)分別為A,B.![]()
(1)當(dāng)M的坐標(biāo)為(0,-1)時(shí),求過M,A,B三點(diǎn)的圓的方程; ![]()
(2)證明:以
為直徑的圓恒過點(diǎn)M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時(shí)代的偉大科學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢既同,則積不容異”. 其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為
,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為
,則“
相等”是“
總相等”的
![]()
A. 充分而不必要條件B. 必要而不充分條件
C. 充分必要條件D. 既不充分也不必要條件
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com