【題目】已知具有相關(guān)關(guān)系的兩個(gè)變量
之間的幾組數(shù)據(jù)如下表所示:
![]()
(1)請(qǐng)根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;
![]()
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
,并估計(jì)當(dāng)
時(shí),
的值;
(3)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),從這五個(gè)點(diǎn)中隨機(jī)抽取2個(gè)點(diǎn),求這兩個(gè)點(diǎn)都在直線
的右下方的概率.
(參考公式:
,
)
【答案】(1)散點(diǎn)圖見(jiàn)解析;(2)
;(3)
.
【解析】試題分析:(1)繪制散點(diǎn)圖;(2)利用參考公式
,
,求出回歸系數(shù)
,得到回歸方程,得到答案;(3)從圖中可知,2點(diǎn)在直線左上方,3點(diǎn)在直線右下方,窮舉隨機(jī)取兩點(diǎn)的可能,得到概率。
試題解析:
(1)散點(diǎn)圖如圖所示:
![]()
(2)依題意,
,
,
,
,
,∴
;
∴回歸直線方程為
,故當(dāng)
時(shí),
.
(3)五個(gè)點(diǎn)中落在直線
右下方的三個(gè)點(diǎn)記為
,另外兩個(gè)點(diǎn)記為
,
從這五個(gè)點(diǎn)中任取兩個(gè)點(diǎn)的結(jié)果有
,
,
,
,
,
,
,
,
,
共10個(gè).
其中兩個(gè)點(diǎn)均在直線
的右下方的結(jié)果有3個(gè),所以概率為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
且
.
(1)若函數(shù)
區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)設(shè)函數(shù)
,
為自然對(duì)數(shù)的底數(shù).若存在
,使不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某中學(xué)舉行的物理知識(shí)競(jìng)賽中,將三個(gè)年級(jí)參賽學(xué)生的成績(jī)?cè)谶M(jìn)行整理后分成5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15. ![]()
(1)求成績(jī)?cè)?0~70分的頻率是多少;
(2)求這三個(gè)年級(jí)參賽學(xué)生的總?cè)藬?shù)是多少;
(3)求成績(jī)?cè)?0~100分的學(xué)生人數(shù)是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于平面向量
,
,
,有下列三個(gè)命題:
①若
=
,則
=
、
②若
=(1,k),
=(﹣2,6),
∥
,則k=﹣3.
③非零向量
和
滿足|
|=|
|=|
﹣
|,則
與
+
的夾角為60°.
其中真命題的序號(hào)為 . (寫出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式kx2﹣2x+3k<0.
(1)若不等式的解集為{x|x<﹣3或x>﹣1},求k的值;
(2)若不等式的解集為,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條光線從點(diǎn)(﹣2,﹣3)射出,經(jīng)y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為( )
A.﹣
或﹣ ![]()
B.﹣
或﹣ ![]()
C.﹣
或﹣ ![]()
D.﹣
或﹣ ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2﹣1=0,x∈R},
(1)若A∩B=A∪B,求實(shí)數(shù)a的值;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C,所對(duì)的邊分別為a,b,c.已知sinA+sinC=psinB(p∈R).且ac=
b2 .
(Ⅰ)當(dāng)p=
,b=1時(shí),求a,c的值;
(Ⅱ)若角B為銳角,求p的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com