分析 利用導數(shù)法可得當x=1時,g(x)取最小值2,由f(x)=-x2-6x-3在x=-3時,取最大值6,令f(x)=2,則x=-5,或x=-1,數(shù)形結合可得答案.
解答
解:∵g(x)=$\frac{{e}^{x}+ex}{ex}$,
∴g′(x)=$\frac{{e}^{x}(x-1)}{e{x}^{2}}$,
當0<x<1時,g′(x)<0,g(x)為減函數(shù),
當x>1時,g′(x)>0,g(x)為增函數(shù),
故當x=1時,g(x)取最小值2,
由f(x)=-x2-6x-3在x=-3時,取最大值6,
令f(x)=2,則x=-5,或x=-1,
作兩個函數(shù)的圖象如右圖所示:
由圖可得:n-m的最大值為-1-(-5)=4.
故答案為:4.
點評 本題考查的知識點是利用導數(shù)研究函數(shù)的最值,二次函數(shù)的圖象和性質,數(shù)形結合思想,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 0.9544 | B. | 0.6829 | C. | 0.4772 | D. | 0.3413 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
| 定價x(元/kg) | 10 | 20 | 30 | 40 | 50 | 60 |
| 天銷售量y(kg) | 1150 | 643 | 424 | 262 | 165 | 86 |
| z=2lny | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com