【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個(gè)面,其棱長為_________.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)函數(shù)為
,其中
為常數(shù).
(1)當(dāng)
時(shí),求
的最大值;
(2)若
在區(qū)間
(
為自然對數(shù)的底數(shù))上的最大值為-3,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
的圓心在直線
上,且圓
經(jīng)過曲線
與
軸的交點(diǎn).
(1)求圓
的方程;
(2)已知過坐標(biāo)原點(diǎn)
的直線
與圓
交
兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN分別是邊長為1的正方形ABCD的邊BCCD的中點(diǎn),將正方形沿對角線AC折起,使點(diǎn)D不在平面ABC內(nèi),則在翻折過程中,有以下結(jié)論:
![]()
①異面直線AC與BD所成的角為定值.
②存在某個(gè)位置,使得直線AD與直線BC垂直.
③存在某個(gè)位置,使得直線MN與平面ABC所成的角為45°.
④三棱錐M-ACN體積的最大值為
.
以上所有正確結(jié)論的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,D,E,F分別是B1C1,AB,AA1的中點(diǎn).
![]()
(1) 求證:EF∥平面A1BD;
(2) 若A1B1=A1C1,求證:平面A1BD⊥平面BB1C1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左右焦點(diǎn)分別為
,上頂點(diǎn)為
,若直線
的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為
,
的周長為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)
的直線
(直線
的斜率不為1)與橢圓交于
兩點(diǎn),點(diǎn)
在點(diǎn)
的上方,若
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
:
的左右焦點(diǎn)分別為
,
,過點(diǎn)
的直線與
交于點(diǎn)
,
. 若
,且
,則
的離心率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
年
月某城市國際馬拉松賽正式舉行,組委會(huì)對
名裁判人員進(jìn)(年齡均在
歲到
歲)行業(yè)務(wù)培訓(xùn),現(xiàn)按年齡(單位:歲)進(jìn)行分組統(tǒng)計(jì):第
組
,第
組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如下:
![]()
(1)若把這
名裁判人員中年齡在
稱為青年組,其中男裁判
名;年齡在
的稱為中年組,其中男裁判
名.試完成
列聯(lián)表并判斷能否在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為裁判員屬于不同的組別(青年組或中年組)與性別有關(guān)系?
![]()
(2)培訓(xùn)前組委會(huì)用分層抽樣調(diào)查方式在第
組共抽取了
名裁判人員進(jìn)行座談,若將其中抽取的第
組的人員記作
,第
組的人員記作
,第
組的人員記作
,若組委會(huì)決定從上述
名裁判人員中再隨機(jī)選
人參加新聞發(fā)布會(huì),要求這
組各選
人,試求裁判人員
不同時(shí)被選擇的概率;
附: ![]()
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(a>b>0)經(jīng)過點(diǎn)(
,1),以原點(diǎn)為圓心、橢圓短半軸長為半徑的圓經(jīng)過橢圓的焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點(diǎn)(-1,0)的直線l與橢圓C相交于A,B兩點(diǎn),試問在x軸上是否存在一個(gè)定點(diǎn)M,使得
恒為定值?若存在,求出該定值及點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com