欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

定義數(shù)列An:a1,a2,…,an,(例如n=3時(shí),A3:a1,a2,a3)滿足a1=an=0,且當(dāng)2≤k≤n(k∈N*)時(shí),(ak-ak-1)2=1.令S(An)=a1+a2+…+an
(1)寫出數(shù)列A5的所有可能的情況;
(2)設(shè)ak-ak-1=ck-1,求S(Am)(用m,c1,…,cm的代數(shù)式來表示);
(3)求S(Am)的最大值.
(1)由題設(shè),滿足條件的數(shù)列A5的所有可能情況有:
①0,1,2,1,0;②0,1,0,1,0;
③0,1,0,-1,0;④0,-1,-2,-1,0;
⑤0,-1,0,1,0;⑥0,-1,0,-1,0.
(2)ak-ak-1=ck-1,由(ak-ak-1)2=1,
則ck-1=1或ck-1=-1(2≤k≤n,k∈N*),
a2-a1=c1,a3-a2=c2
…an-an-1=cn-1,
所以an=a1+c1+c2+…+cn-1
因?yàn)閍1=an=0,所以c1+c2+…+cn-1=0,且n為奇數(shù),
c1,c2,…,cn-1是由
n-1
2
個(gè)1和
n-1
2
個(gè)-1構(gòu)成的數(shù)列.
所以S(Am)=c1+(c1+c2)+…+(c1+c2+…+cm-1
=(m-1)c1+(m-2)c2+…+2cm-2+cm-1
(3)當(dāng)c1,c2,…,cm-1的前
m-1
2
項(xiàng)取1,
m-1
2
項(xiàng)取-1時(shí)S(Am)最大,
此時(shí)S(Am)=(m-1)+(m-2)+…+
m+1
2
-(
m-1
2
+…+2+1)=
(m-1)2
4
(14分)
證明如下:
假設(shè)c1,c2,…,cm-1的前
m-1
2
項(xiàng)中恰有t項(xiàng)cm1,cm2,…,cmt取-1,
則c1,c2,…,cm-1的后
m-1
2
項(xiàng)中恰有t項(xiàng)cn1,cn2,…cnt取1,
其中1≤t≤
m-1
2
,1≤mi
m-1
2
,
n-1
2
ni≤m-1
,i=1,2,…,t.
所以S(Am)=(m-1)c1+(m-2)c2+…+2cm-2+cm-1
=(m-1)c1+(m-2)c2+…+
m+1
2
c
m-1
2
+
m-1
2
c
m+1
2
+…+2cm-2+cm-1

=(m-1)+(m-2)+…+
m+1
2
-(
m-1
2
+…+2+1)
-2[(m-m1)+(m-m2)+…+(m-mt]+2[(m-n1)+(m-n2)+…+(m-nt)]
=
(m-1)2
4
-2[(n1-m1)+(n2-m2)+…+(nt-mt)]<
(m-1)2
4

所以S(Am)的最大值為
(m-1)2
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義數(shù)列{an}:a1=1,當(dāng)n≥2時(shí),an=
an-1+r,n=2k,k∈N*
2an-1,n=2k+1,k∈N*
其中r≥0常數(shù).
(Ⅰ)若當(dāng)r=0時(shí),Sn=a1+a2+…+an;
(1)求:Sn;
(2)求證:數(shù)列{S2n}中任意三項(xiàng)均不能構(gòu)成等差數(shù)列;
(Ⅱ)求證:對(duì)一切n∈N*及r≥0,不等式
n
k=1
2k
a2k-1a2k
<4
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+mx在(0,1)上是增函數(shù),
(Ⅰ)實(shí)數(shù)m的取值集合為A,當(dāng)m取集合A中的最小值時(shí),定義數(shù)列{an}滿足a1=3,且an>0,an+1=
-3f′(an)+9
,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=nan,數(shù)列{bn}的前n項(xiàng)和為Sn,求證:Sn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義數(shù)列{an}:a1=1,當(dāng)n≥2 時(shí),an=
an-1+r,n=2k,k∈N*
2an-1,n=2k-1,k∈N*

(1)當(dāng)r=0時(shí),Sn=a1+a2+a3+…+an
①求:Sn; ②求證:數(shù)列{S2n}中任意三項(xiàng)均不能夠成等差數(shù)列.
(2)若r≥0,求證:不等式
n
k=1
2k
a2k-1a2k
<4
(n∈N*)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳二模)定義數(shù)列{an}:a1=1,a2=2,且對(duì)任意正整數(shù)n,有an+2=[2+(-1)n]an+(-1)n+1+1.
(1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)和Sn;
(2)問是否存在正整數(shù)m,n,使得S2n=mS2n-1?若存在,則求出所有的正整數(shù)對(duì)(m,n);若不存在,則加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)一模)定義數(shù)列An:a1,a2,…,an,(例如n=3時(shí),A3:a1,a2,a3)滿足a1=an=0,且當(dāng)2≤k≤n(k∈N*)時(shí),(ak-ak-1)2=1.令S(An)=a1+a2+…+an
(1)寫出數(shù)列A5的所有可能的情況;
(2)設(shè)ak-ak-1=ck-1,求S(Am)(用m,c1,…,cm的代數(shù)式來表示);
(3)求S(Am)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案