| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
分析 設(shè)F(-c,0),漸近線方程為y=$\frac{a}$x,對(duì)稱點(diǎn)為F'(m,n),運(yùn)用中點(diǎn)坐標(biāo)公式和兩直線垂直的條件:斜率之積為-1,求出對(duì)稱點(diǎn)的坐標(biāo),代入雙曲線的方程,由離心率公式計(jì)算即可得到所求值.
解答 解:設(shè)F(-c,0),漸近線方程為y=$\frac{a}$x,
對(duì)稱點(diǎn)為F'(m,n),
即有$\frac{n}{m+c}$=-$\frac{a}$,
且$\frac{1}{2}$•n=$\frac{1}{2}$•$\frac{b(m-c)}{a}$,
解得m=$\frac{^{2}-{a}^{2}}{c}$,n=-$\frac{2ab}{c}$,
將F'($\frac{^{2}-{a}^{2}}{c}$,-$\frac{2ab}{c}$),即($\frac{{c}^{2}-2{a}^{2}}{c}$,-$\frac{2ab}{c}$),
代入雙曲線的方程可得$\frac{({c}^{2}-{a}^{2})^{2}}{{c}^{2}{a}^{2}}$-$\frac{4{a}^{2}^{2}}{{c}^{2}^{2}}$=1,
化簡(jiǎn)可得$\frac{{c}^{2}}{{a}^{2}}$-4=1,即有e2=5,
解得e=$\sqrt{5}$.
故選:D.
點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用中點(diǎn)坐標(biāo)公式和兩直線垂直的條件:斜率之積為-1,以及點(diǎn)滿足雙曲線的方程,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{22}{17}$ | B. | $\frac{22}{17}$i | C. | $\frac{22}{17}$ | D. | $\frac{3}{17}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $(\frac{1}{2},1)$ | B. | $(\frac{1}{2},\frac{3}{4})$ | C. | $(\frac{1}{3},1)$ | D. | $(\frac{1}{2},2)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com