已知函數(shù)![]()
.
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2)若
時,函數(shù)
在閉區(qū)間
上的最大值為
,求
的取值范圍.
(1)單調(diào)增區(qū)間分別為
,
,單調(diào)減區(qū)間為
;(2)
.
解析試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值以及不等式的基礎(chǔ)知識,考查分類討論思想,考查綜合運(yùn)用數(shù)學(xué)知識和方法分析問題解決問題的能力和計算能力.第一問,當(dāng)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題13分) 已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
時,函數(shù)解析式中沒有參數(shù),直接求導(dǎo),令導(dǎo)數(shù)大于0和小于0,分別解出函數(shù)的單調(diào)增區(qū)間和單調(diào)減區(qū)間;第二問,因為
的兩個根是
和1,所以需要討論
和1的大小,分3種情況進(jìn)行討論,分別列表判斷函數(shù)的單調(diào)性、極值、最值,求出函數(shù)在閉區(qū)間
上的最大值判斷是否等于
,求出
的取值范圍.
試題解析:
2分
(1)當(dāng)
時,![]()
當(dāng)
或
時,
,
當(dāng)
,
,
所以
的單調(diào)增區(qū)間分別為
,
, 5分
的單調(diào)減區(qū)間為
.
(2)(Ⅰ)當(dāng)
時,
,
在
上單調(diào)遞增,最大值為![]()
(Ⅱ)當(dāng)
時,列表如下:x 0 (0,a) a (a,1) 1 (1,1+a) a+1 f/(x) + 0 - 0 + f(x) 增 極大值f(a) ![]()
![]()
課課練與單元測試系列答案
世紀(jì)金榜小博士單元期末一卷通系列答案
單元測試AB卷臺海出版社系列答案
黃岡新思維培優(yōu)考王單元加期末卷系列答案
名校名師奪冠金卷系列答案
小學(xué)英語課時練系列答案
培優(yōu)新幫手系列答案
天天向上一本好卷系列答案
小學(xué)生10分鐘應(yīng)用題系列答案
課堂作業(yè)廣西教育出版社系列答案
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
![]()
.
(Ⅰ)若函數(shù)
在
上為增函數(shù),求實數(shù)
的取值范圍;
(Ⅱ)當(dāng)
且
時,證明:
.
.
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間
上為減函數(shù),求實數(shù)
的取值范圍;
(3)當(dāng)
時,不等式
恒成立,求實數(shù)
的取值范圍.
,
其中![]()
(Ⅰ)若
是函數(shù)
的極值點(diǎn),求實數(shù)
的值;
(Ⅱ)若對任意的
(
為自然對數(shù)的底數(shù))都有
成立,求實數(shù)
的取值范圍
,曲線
通過點(diǎn)(0,2a+3),且在
處的切線垂直于y軸.
(I)用a分別表示b和c;
(II)當(dāng)bc取得最大值時,寫出
的解析式;
(III)在(II)的條件下,g(x)滿足
,求g(x)的最大值及相應(yīng)x值.
(其中
,e是自然對數(shù)的底數(shù)).
(Ⅰ)若
,試判斷函數(shù)
在區(qū)間
上的單調(diào)性;
(Ⅱ)若函數(shù)
有兩個極值點(diǎn)
,
(
),求k的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,試證明
.
(
為自然對數(shù)的底數(shù))。
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)是否存在實數(shù)
,使函數(shù)
在
上是單調(diào)增函數(shù)?若存在,求出
的值;若不存在,請說明理由。恒成立,則![]()
,又
,![]()
.
(I) 當(dāng)
,求
的最小值;
(II) 若函數(shù)
在區(qū)間
上為增函數(shù),求實數(shù)
的取值范圍;
(III)過點(diǎn)
恰好能作函數(shù)
圖象的兩條切線,并且兩切線的傾斜角互補(bǔ),求實數(shù)
的取值范圍.
的圖象在與
軸交點(diǎn)處的切線方程是
.
(I)求函數(shù)
的解析式;
(II)設(shè)函數(shù)
,若
的極值存在,求實數(shù)
的取值范圍以及函數(shù)
取得極值時對應(yīng)的自變量
的值.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號