分析 運用數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,化簡計算即可得到所求.
解答 解:前n項和Sn=1•$\frac{1}{2}$+3•$\frac{1}{4}$+5•$\frac{1}{8}$+…+(2n-1)•($\frac{1}{2}$)n,①
$\frac{1}{2}$Sn=1•$\frac{1}{4}$+3•$\frac{1}{8}$+5•$\frac{1}{16}$+…+(2n-1)•($\frac{1}{2}$)n+1,②
①-②可得,$\frac{1}{2}$Sn=$\frac{1}{2}$+2[$\frac{1}{4}$+$\frac{1}{8}$+…+($\frac{1}{2}$)n]-(2n-1)•($\frac{1}{2}$)n+1
=$\frac{1}{2}$+2•$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(2n-1)•($\frac{1}{2}$)n+1
化簡可得,Sn=3-(2n+3)•($\frac{1}{2}$)n.
點評 本題考查數(shù)列的求和:錯位相減法,同時考查等比數(shù)列的求和公式的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{2}$(3n-1) | B. | $\frac{9}{2}$(3n-1) | C. | $\frac{3}{8}$(9n-1) | D. | $\frac{9}{8}$(9n-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com