分析:先根據(jù)對(duì)數(shù)的真數(shù)必須大于零,求出函數(shù)的定義域.為了求出原函數(shù)的單調(diào)減區(qū)間,研究真數(shù)對(duì)應(yīng)的余弦型函數(shù)的增區(qū)間,最后將所得區(qū)間與函數(shù)的定義域取交集,即可得原函數(shù)的單調(diào)增區(qū)間.
解答:解:∵對(duì)數(shù)的真數(shù)大于零
∴
cos(-x+) >0⇒
2kπ-<-x+<2kπ+,k∈Z
解之得函數(shù)的定義域?yàn)椋?span id="ue22isk" class="MathJye">(6kπ-
,6kπ+
),k∈Z
令t=
cos(-x+) =cos(x-)∵
0<<1∴t關(guān)于x的單調(diào)減區(qū)間是函數(shù)f (x)=
logcos(-x+)的單調(diào)遞增區(qū)間
由
2kπ<x-< 2kπ+π,k∈Z,得x∈
(6kπ+,6kπ+),k∈Z,
再結(jié)合函數(shù)的定義域,得x
∈(6kπ+,6kπ+),是原函數(shù)的增區(qū)間
故答案為:
(6kπ+,6kπ+) 點(diǎn)評(píng):本題以對(duì)數(shù)型函數(shù)為例,考查了復(fù)合三角函數(shù)的單調(diào)性,屬于中檔題.解題的同時(shí)要注意單調(diào)區(qū)間應(yīng)該是函數(shù)的定義域的子集.