欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情

【題目】已知函數定義域為,若對于任意的,都有,且時,有.

(1)判斷并證明函數的奇偶性;

(2)判斷并證明函數的單調性;

(3)設,若,對所有,恒成立,求實數的取值范圍.

【答案】(1)奇函數,證明見解析;(2)增函數,證明見解析;(3).

【解析】

試題分析:(1)利用賦值法先求出,然后令,可得的關系,從而判定函數的奇偶性;(2)根據函數單調性的定義先在定義域上任取零點,并規(guī)定大小,然后判斷函數的大小,從而確定函數的單調性;(3)關于恒成立的問題常常進行轉化,若,對所有,恒成立,可轉化成恒成立,然后將其看出關于的函數,即可求解.

試題解析:(1)因為有,

,得,所以,

可得:,所以,所以為奇函數.

(2)是定義在上的奇函數,由題意設,

,

由題意時,有,,是在上為單調遞增函數;

(3)因為上為單調遞增函數,所以上的最大值為,

所以要使,對所有,恒成立,

只要,即恒成立.

,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓 的右準線方程為,又離心率為,橢圓的左頂點為,上頂點為,點為橢圓上異于任意一點.

(1)求橢圓的方程;

(2)若直線軸交于點,直線軸交于點求證: 為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓C: =1的離心率e= ,動點P在橢圓C上,點P到橢圓C的兩個焦點的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為 =1(m>n>0),橢圓C2的方程為 =λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過橢圓C上動點P的切線l交橢圓C2于A,B兩點,O為坐標原點,試證明當切線l變化時|PA|=|PB|并研究△OAB面積的變化情況.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的圓心在直線上,且圓經過點與點.

(1)求圓的方程;

(2)過點作圓的切線,求切線所在的直線的方程.

【答案】(1);(2).

【解析】試題分析:(1)求出線段的中點,進而得到線段的垂直平分線為,與聯立得交點,∴.則圓的方程可求

(2)當切線斜率不存在時,可知切線方程為.

當切線斜率存在時,設切線方程為,由到此直線的距離為,解得,即可到切線所在直線的方程.

試題解析:((1)設 線段的中點為,∵,

∴線段的垂直平分線為,與聯立得交點,

.

∴圓的方程為.

(2)當切線斜率不存在時,切線方程為.

當切線斜率存在時,設切線方程為,即,

到此直線的距離為,解得,∴切線方程為.

故滿足條件的切線方程為.

【點睛本題考查圓的方程的求法,圓的切線,中點弦等問題,解題的關鍵是利用圓的特性,利用點到直線的距離公式求解.

型】解答
束】
20

【題目】某小型企業(yè)甲產品生產的投入成本(單位:萬元)與產品銷售收入(單位:萬元)存在較好的線性關系,下表記錄了最近5次產品的相關數據.

(投入成本)

7

10

11

15

17

(銷售收入)

19

22

25

30

34

1)求關于的線性回歸方程;

2)根據(1)中的回歸方程,判斷該企業(yè)甲產品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大()?

相關公式 .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知各項均為正數的數列{an}的前n項和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通項公式;
(2)若數列{bn}滿足bn= ,求{bn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知復數z,(m∈R,i是虛數單位).

(1)若z是純虛數,求m的值;

(2)設z的共軛復數,復數+2z在復平面上對應的點在第一象限,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,AB是⊙O的一條切線,切點為B,直線ADE、CFD、CGE都是⊙O的割線,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求證:FG∥AC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學對男女學生是否喜愛古典音樂進行了一個調查,調查者對學校高三年級隨機抽取了100名學生,調查結果如表:

喜愛

不喜愛

總計

男學生

60

80

女學生

總計

70

30

附:K2=

P(K2≥k0

0.100

0.050

0.010

k0

2.706

3.841

6.635


(1)完成如表,并根據表中數據,判斷是否有95%的把握認為“男學生和女學生喜歡古典音樂的程度有差異”;
(2)從以上被調查的學生中以性別為依據采用分層抽樣的方式抽取10名學生,再從這10名學生中隨機抽取5名學生去某古典音樂會的現場觀看演出,求正好有X個男生去觀看演出的分布列及期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】12分)已知函數fx=

1)判斷函數在區(qū)間[1,+∞)上的單調性,并用定義證明你的結論.

2)求該函數在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

同步練習冊答案