【題目】設(shè)函數(shù)f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在極值點(diǎn)x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=0;
(3)設(shè)a>0,函數(shù)g(x)=|f(x)|,求證:g(x)在區(qū)間[﹣1,1]上的最大值不小于
.
【答案】
(1)
解:若f(x)=x3﹣ax﹣b,則f′(x)=3x2﹣a,
分兩種情況討論:
①、當(dāng)a≤0時(shí),有f′(x)=3x2﹣a≥0恒成立,
此時(shí)f(x)的單調(diào)遞增區(qū)間為(﹣∞,+∞),
②、當(dāng)a>0時(shí),令f′(x)=3x2﹣a=0,解得x=-
或x=
,
當(dāng)x>
或x<﹣
時(shí),f′(x)=3x2﹣a>0,f(x)為增函數(shù),
當(dāng)﹣
<x<
時(shí),f′(x)=3x2﹣a<0,f(x)為減函數(shù),
故f(x)的增區(qū)間為(﹣∞,﹣
),(
,+∞),減區(qū)間為(﹣
,
)
(2)
解:若f(x)存在極值點(diǎn)x0,則必有a>0,且x0≠0,
由題意可得,f′(x)=3x2﹣a,則x02=
,
進(jìn)而f(x0)=x03﹣ax0﹣b=﹣
x0﹣b,
又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣
x0+2ax0﹣b=f(x0),
由題意及(Ⅰ)可得:存在唯一的實(shí)數(shù)x1,滿(mǎn)足f(x1)=f(x0),其中x1≠x0,
則有x1=﹣2x0,故有x1+2x0=0;
(3)
解:設(shè)g(x)在區(qū)間[﹣1,1]上的最大值M,max{x,y}表示x、y兩個(gè)數(shù)的最大值,
下面分三種情況討論:
①當(dāng)a≥3時(shí),﹣
≤﹣1<1≤
,
由(I)知f(x)在區(qū)間[﹣1,1]上單調(diào)遞減,
所以f(x)在區(qū)間[﹣1,1]上的取值范圍是[f(1),f(﹣1)],
因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}
=max{|a﹣1+b|,|a﹣1﹣b|}=
,
所以M=a﹣1+|b|≥2
②當(dāng)
a<3時(shí),
,
由(Ⅰ)、(Ⅱ)知,f(﹣1)≥
=f(
),f(1)≤
=
,
所以f(x)在區(qū)間[﹣1,1]上的取值范圍是[f(
),f(﹣
)],
因此M=max{|f(
)|,|f(﹣
)|}=max{|
|,|
|}
=max{|
|,|
|}=
,
③當(dāng)0<a<
時(shí),
,
由(Ⅰ)、(Ⅱ)知,f(﹣1)<
=f(
),f(1)>
=
,
所以f(x)在區(qū)間[﹣1,1]上的取值范圍是[f(﹣1),f(1)],
因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}
=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>
,
綜上所述,當(dāng)a>0時(shí),g(x)在區(qū)間[﹣1,1]上的最大值不小于 ![]()
【解析】(1)求出f(x)的導(dǎo)數(shù),討論a≤0時(shí)f′(x)≥0,f(x)在R上遞增;當(dāng)a>0時(shí),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間;
(2)由條件判斷出a>0,且x0≠0,由f′(x0)=0求出x0 , 分別代入解析式化簡(jiǎn)f(x0),f(﹣2x0),化簡(jiǎn)整理后可得證;
(3)設(shè)g(x)在區(qū)間[﹣1,1]上的最大值M,根據(jù)極值點(diǎn)與區(qū)間的關(guān)系對(duì)a分三種情況討論,運(yùn)用f(x)單調(diào)性和前兩問(wèn)的結(jié)論,求出g(x)在區(qū)間上的取值范圍,利用a的范圍化簡(jiǎn)整理后求出M,再利用不等式的性質(zhì)證明結(jié)論成立.
本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間和最值,不等式的證明,注意運(yùn)用分類(lèi)討論的思想方法和轉(zhuǎn)化思想,考查分析法在證明中的應(yīng)用,以及化簡(jiǎn)整理、運(yùn)算能力,屬于難題.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間
內(nèi),(1)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的極值與導(dǎo)數(shù)的理解,了解求函數(shù)
的極值的方法是:(1)如果在
附近的左側(cè)
,右側(cè)
,那么
是極大值(2)如果在
附近的左側(cè)
,右側(cè)
,那么
是極小值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)
恒過(guò)定點(diǎn)
.
(Ⅰ)若直線(xiàn)
經(jīng)過(guò)點(diǎn)
且與直線(xiàn)
垂直,求直線(xiàn)
的方程;
(Ⅱ)若直線(xiàn)
經(jīng)過(guò)點(diǎn)
且坐標(biāo)原點(diǎn)到直線(xiàn)
的距離等于3,求直線(xiàn)
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等比數(shù)列,前n項(xiàng)和為Sn(n∈N*),且
﹣
=
,S6=63.
(1)求{an}的通項(xiàng)公式;
(2)若對(duì)任意的n∈N* , bn是log2an和log2an+1的等差中項(xiàng),求數(shù)列{(﹣1)n bn2}的前2n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x3﹣1;當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x);當(dāng)x>
時(shí),f(x+
)=f(x﹣
).則f(6)=( 。
A.﹣2
B.﹣1
C.0
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動(dòng)支付(又稱(chēng)手機(jī)支付)越來(lái)越普遍,某學(xué)校興趣小組為了了解移動(dòng)支付在大眾中的熟知度,對(duì)15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問(wèn)題是“你會(huì)使用移動(dòng)支付嗎?”其中,回答“會(huì)”的共有
個(gè)人,把這
個(gè)人按照年齡分成5組:第1組
,第2組
,第3組
,第4組
,第5組
,然后繪制成如圖所示的頻率分布直方圖,其中,第一組的頻數(shù)為20.
![]()
(1)求
和
的值,并根據(jù)頻率分布直方圖估計(jì)這組數(shù)據(jù)的眾數(shù);
(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù);
(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來(lái)自同一個(gè)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知橢圓
兩個(gè)焦點(diǎn)的坐標(biāo)分別是
,
,并且經(jīng)過(guò)點(diǎn)
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2) 已知
是橢圓
的左頂點(diǎn),斜率為
的直線(xiàn)交橢圓
于
,
兩點(diǎn),
點(diǎn)
在
上,
,
,證明:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com