【題目】有限個(gè)元素組成的集合
,
,記集合
中的元素個(gè)數(shù)為
,即
.定義
,集合
中的元素個(gè)數(shù)記為
,當(dāng)
時(shí),稱集合
具有性質(zhì)
.
(1)
,
,判斷集合
,
是否具有性質(zhì)
,并說明理由;
(2)設(shè)集合
,
且
(
),若集合
具有性質(zhì)
,求
的最大值;
(3)設(shè)集合
,其中數(shù)列
為等比數(shù)列,
(
)且公比為有理數(shù),判斷集合
是否具有性質(zhì)
并說明理由.
【答案】(1)集合
不具有性質(zhì)
,集合
具有性質(zhì)
,理由見解析.(2)
.(3)集合
具有性質(zhì)
,理由見解析.
【解析】
(1)根據(jù)定義即可判斷,進(jìn)而得出答案.
(2)運(yùn)用反證法即可得出答案.
(3)設(shè)
,假設(shè)當(dāng)
時(shí)有
成立,進(jìn)而結(jié)合反證法證明假設(shè)不成立,進(jìn)而得出答案.
(1)集合
不具有性質(zhì)
,集合
具有性質(zhì)
.
,
不具有性質(zhì)
;
,
具有性質(zhì)
.
(2)若三個(gè)數(shù)
,
,
成等差數(shù)列,則
不具有性質(zhì)
,理由是
.
因?yàn)?/span>
且
(
)所以
,
要使
取最大,則
;
,易知
不具有性質(zhì)
,要使
取最大,
則
;
,要使
取最大,檢驗(yàn)可得
;
(3)集合
具有性質(zhì)
.
設(shè)等比數(shù)列的公比為為
,所以
(
)且
為有理數(shù),
假設(shè)當(dāng)
時(shí)有
成立,則有
因?yàn)?/span>
為有理數(shù),設(shè)
(
,
)且(
,
互質(zhì)),因此有
即
(1),
(1)式左邊是
的倍數(shù),右邊是
的倍數(shù),又
,
互質(zhì),
顯然
不成立.
所以
,所以集合
具有性質(zhì)
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
| 上一年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
| 上兩年度未發(fā)生有責(zé)任道路交通事故 | 下浮 |
| 上三年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
| 上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
| 上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故 | 上浮10% |
| 上一個(gè)年度發(fā)生有責(zé)任交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了解某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,
,記
為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求
的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】陽馬和鱉臑(bienao)是《九章算術(shù)·商功》里對兩種錐體的稱謂.如圖所示,取一個(gè)長方體,按下圖斜割一分為二,得兩個(gè)模一樣的三棱柱,稱為塹堵(如圖).再沿其中一個(gè)塹堵的一個(gè)頂點(diǎn)與相對的棱剖開,得四棱錐和三棱錐各一個(gè),有一棱與底面垂直的四棱錐稱為陽馬(四棱錐
)余下三棱錐稱為鱉臑(三棱錐
)若將某長方體沿上述切割方法得到一個(gè)陽馬一個(gè)鱉臑,且該陽馬的正視圖和鱉臑的側(cè)視圖如圖所示,則可求出該陽馬和鱉臑的表面積之和為( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
的棱長為4,點(diǎn)E、F為棱CD、
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求直線
與平面ACF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長沙市為了支援邊遠(yuǎn)山區(qū)的教育事業(yè),組織了一支由13名教師組成的隊(duì)伍下鄉(xiāng)支教,記者采訪隊(duì)長時(shí)詢問這個(gè)團(tuán)隊(duì)的構(gòu)成情況,隊(duì)長回答:“(1)有中學(xué)高級教師;(2)中學(xué)教師不多于小學(xué)教師;(3)小學(xué)高級教師少于中學(xué)中級教師;(4)小學(xué)中級教師少于小學(xué)高級教師;(5)支教隊(duì)伍的職稱只有小學(xué)中級、小學(xué)高級、中學(xué)中級、中學(xué)高級;(6)無論是否把我計(jì)算在內(nèi),以上條件都成立.”由隊(duì)長的敘述可以推測出他的學(xué)段及職稱分別是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的左、右焦點(diǎn)為
,
,上、下頂點(diǎn)為
,
,四邊形
是面積為2的正方形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)
,過點(diǎn)
的直線
與橢圓交于
,
兩點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生對《中華人民共和國交通安全法》的了解情況,調(diào)查部門在該校進(jìn)行了一次問卷調(diào)查(共12道題),從該校學(xué)生中隨機(jī)抽取40人,統(tǒng)計(jì)了每人答對的題數(shù),將統(tǒng)計(jì)結(jié)果分成
,
,
,
,
,
六組,得到如下頻率分布直方圖.
![]()
(1)若答對一題得10分,未答對不得分,估計(jì)這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若從答對題數(shù)在
內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對題數(shù)在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月10日21時(shí)整,全球六地(上海和臺(tái)北、布魯塞爾、圣地亞哥、東京和華盛頓同時(shí)召開新聞發(fā)布會(huì),宣布人類首次利用虛擬射電望遠(yuǎn)鏡,成功捕獲世界上首張黑洞圖像,公布的照片展示了一個(gè)中心為黑色的明亮環(huán)狀結(jié)構(gòu),看上去有點(diǎn)像個(gè)橙色的甜甜圈,其黑色部分是黑洞投下的“陰影”,明亮部分是繞黑洞高速旋轉(zhuǎn)的吸積盤.某同學(xué)作了一張黑洞示意圖,如圖所示,由兩個(gè)同心圓和半個(gè)同心圓環(huán)構(gòu)成圓及圓環(huán)的半徑從內(nèi)到外依次為2,3,4,5個(gè)單位在圖中隨機(jī)任取一點(diǎn),則該點(diǎn)取自陰影的概率為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,AB=AC=
,BC=AA1=2,O,M分別為BC,AA1的中點(diǎn).
![]()
(1)求證:OM∥平面CB1A1;
(2)求點(diǎn)M到平面CB1A1的距離.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com