欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),若矩形ABCD的四個(gè)頂點(diǎn)在E上,AB,CD的中點(diǎn)為E的兩個(gè)焦點(diǎn),且2|AB|=3|BC|,則E的離心率是2.

分析 可令x=c,代入雙曲線的方程,求得y=±$\frac{^{2}}{a}$,再由題意設(shè)出A,B,C,D的坐標(biāo),由2|AB|=3|BC|,可得a,b,c的方程,運(yùn)用離心率公式計(jì)算即可得到所求值.

解答 解:令x=c,代入雙曲線的方程可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{^{2}}{a}$,
由題意可設(shè)A(-c,$\frac{^{2}}{a}$),B(-c,-$\frac{^{2}}{a}$),C(c,-$\frac{^{2}}{a}$),D(c,$\frac{^{2}}{a}$),
由2|AB|=3|BC|,可得
2•$\frac{2^{2}}{a}$=3•2c,即為2b2=3ac,
由b2=c2-a2,e=$\frac{c}{a}$,可得2e2-3e-2=0,
解得e=2(負(fù)的舍去).
故答案為:2.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用方程的思想,正確設(shè)出A,B,C,D的坐標(biāo)是解題的關(guān)鍵,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某射手射中10環(huán)的概率為0.28,射中9環(huán)的概率為0.24,射中8環(huán)的概率為0.19,求這個(gè)射手
(1)一次射中10環(huán)或9環(huán)的概率;
(2)一次射中不低于8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={1,3,5,7},B={x|2≤x≤5},則A∩B=( 。
A.{1,3}B.{3,5}C.{5,7}D.{1,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.化簡(jiǎn):$\frac{cos(α-π)sin(π+α)tan(2π+α)}{sin(-π-α)sin(2π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知非零向量$\overrightarrow{m}$,$\overrightarrow{n}$滿足4|$\overrightarrow{m}$|=3|$\overrightarrow{n}$|,cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{1}{3}$.若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$),則實(shí)數(shù)t的值為( 。
A.4B.-4C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)令cn=$\frac{({a}_{n}+1)^{n+1}}{(_{n}+2)^{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)P和Q.
①求證:線段PQ的中點(diǎn)坐標(biāo)為(2-p,-p);
②求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)P($\sqrt{3}$,$\frac{1}{2}$)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)不過原點(diǎn)O且斜率為$\frac{1}{2}$的直線l與橢圓E交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為M,直線OM與橢圓E交于C,D,證明:︳MA︳•︳MB︳=︳MC︳•︳MD︳

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.小敏打開計(jì)算機(jī)時(shí),忘記了開機(jī)密碼的前兩位,只記得第一位是M,I,N中的一個(gè)字母,第二位是1,2,3,4,5中的一個(gè)數(shù)字,則小敏輸入一次密碼能夠成功開機(jī)的概率是( 。
A.$\frac{8}{15}$B.$\frac{1}{8}$C.$\frac{1}{15}$D.$\frac{1}{30}$

查看答案和解析>>

同步練習(xí)冊(cè)答案