已知f(x)的定義域?yàn)镽+,且f(x+y)=f(x)+f(y)對一切正實(shí)數(shù)x,y都成立,若f(8)=4,則f(2)=( )
A.0
B.1
C.-1
D.2
【答案】分析:根據(jù)f(x+y)=f(x)+f(y)對一切正實(shí)數(shù)x,y都成立,則f(8)=f(6+2)=f(6)+f(2)=f(4)+2f(2)=4f(2)可求出所求.
解答:解:∵f(x)的定義域?yàn)镽+,且f(x+y)=f(x)+f(y)對一切正實(shí)數(shù)x,y都成立
∴f(8)=f(6+2)=f(6)+f(2)=f(4)+2f(2)=4f(2)=4
∴f(2)=1
故選B.
點(diǎn)評:本題主要考查了抽象函數(shù)求值,解題的關(guān)鍵是利用等式f(x+y)=f(x)+f(y),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)的定義域?yàn)閇-1,2),則f(|x|)的定義域?yàn)椋ā 。?/div>
| A、[-1,2) | B、[-1,1] | C、(-2,2) | D、[-2,2) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)的定義域是[0,1],且f(x+m)+f(x-m)的定義域是∅,則正數(shù)m的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)的定義域?yàn)閧x∈R|x≠0},且f(x)是奇函數(shù),當(dāng)x>0時f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2.
(1)求b,c的值;及f(x)在x>0時的表達(dá)式;
(2)求f(x)在x<0時的表達(dá)式;
(3)若關(guān)于x的方程f(x)=ax(a∈R)有解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)的定義域?yàn)镽+,且f(x+y)=f(x)+f(y)對一切正實(shí)數(shù)x,y都成立,若f(8)=4,則f(2)=( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)的定義域?yàn)閇0,1],求函數(shù)y=f(x+a)+f(x-a)(0<a<
)的定義域.
查看答案和解析>>