已知
Z)是奇函數(shù),又
,
求
的值。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知函數(shù)
是定義域?yàn)镽的偶函數(shù),其圖像均在x軸的上方,對(duì)任意的
,都有
,且
,又當(dāng)
時(shí),
為增函數(shù)。
(1)求
的值;
(2)對(duì)于任意正整數(shù)
,不等式:
恒成立,求實(shí)數(shù)
的取值
范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(I)如果對(duì)任意
恒成立,求實(shí)數(shù)a的取值范圍;
(II)設(shè)函數(shù)
的兩個(gè)極值點(diǎn)分別為
判斷下列三個(gè)代數(shù)式:
①
②
③
中有幾個(gè)為定值?并且是定值請(qǐng)求出;
若不是定值,請(qǐng)把不是定值的表示為函數(shù)
并求出
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(I)判斷
的奇偶性;
(Ⅱ)設(shè)函數(shù)
在區(qū)間
上的最小值為
,求
的表達(dá)式;
(Ⅲ)若
,證明:方程
有兩個(gè)不同的正數(shù)解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(
,
).
(I)若函數(shù)
在其定義域內(nèi)是減函數(shù),求
的取值范圍;
(II)函數(shù)
是否有最小值?若有最小值,指出其取得最小值時(shí)
的值,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
設(shè)函數(shù)
,
(1)用定義證明:函數(shù)
是R上的增函數(shù);(6分)
(2)證明:對(duì)任意的實(shí)數(shù)t,都有
;(4分)
(3)求值:
。(4分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
為實(shí)數(shù).
(1)當(dāng)
時(shí),判斷函數(shù)
的奇偶性,并說(shuō)明理由;
(2)當(dāng)
時(shí),指出函數(shù)
的單調(diào)區(qū)間(不要過(guò)程);
(3)是否存在實(shí)數(shù)![]()
,使得
在閉區(qū)間
上的最大值為2.若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
已知定義在R上的函
數(shù)
是奇函數(shù)
(1)求
的值;
(2)判斷
的單調(diào)性,并用單調(diào)性定義證明;
(3)若對(duì)任意的
,不等式
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某企業(yè)生產(chǎn)一種產(chǎn)品時(shí),固定成本為5 000元,而每生產(chǎn)100臺(tái)產(chǎn)品時(shí)直接消耗成本要增加2
500元,市場(chǎng)對(duì)此商品年需求量為500臺(tái),銷售的收入函數(shù)為![]()
(萬(wàn)元)(0≤
≤5),其中
是產(chǎn)品售出的數(shù)量(單位:百臺(tái))
(1)把利潤(rùn)表示為年產(chǎn)量的函數(shù);(2)年產(chǎn)量多少時(shí),企業(yè)所得的利潤(rùn)最大;
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com