| A. | 9 | B. | 14 | C. | 15 | D. | 16 |
分析 根據(jù)對(duì)稱性求出a,b,利用導(dǎo)數(shù)研究函數(shù)的最值即可.
解答
解:∵f(x)=(1-x2)(x2+ax+b)的圖象關(guān)于直線x=2對(duì)稱,
∴f(1)=f(3),f(-1)=f(5),
即$\left\{\begin{array}{l}{9+3a+b=0}\\{25+5a+b=0}\end{array}\right.$,解得a=-8,b=15,
即f(x)=(1-x2)(x2-8x+15)=-x4+8x3-14x2-8x+15,
則f′(x)=-4x3+24x2-28x-8=-4(x-2)(x2-4x-1),
由f′(x)=0,解得x=2或x=2+$\sqrt{5}$或x=2-$\sqrt{5}$,
由f′(x)>0,解得2<x<2+$\sqrt{5}$或x<2-$\sqrt{5}$,此時(shí)函數(shù)單調(diào)遞增,
由f′(x)<0,解得2-$\sqrt{5}$<x<2或x>2+$\sqrt{5}$,此時(shí)函數(shù)單調(diào)遞減,
作出對(duì)應(yīng)的函數(shù)圖象如圖:
則當(dāng)x=2-$\sqrt{5}$或2+$\sqrt{5}$時(shí),函數(shù)f(x)取得極大值同時(shí)也是最大值
則f(2+$\sqrt{5}$)=16,
故選:D.
點(diǎn)評(píng) 本題主要考查函數(shù)最值的區(qū)間,根據(jù)對(duì)稱性求出a,b的值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最值求法等知識(shí),綜合性較強(qiáng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {x|-2≤x<0} | B. | $\left\{{x\left|{-2≤x<\frac{1}{2}}\right.}\right\}$ | C. | $\left\{{x\left|{0≤x<\frac{1}{2}}\right.}\right\}$ | D. | {x|0≤x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $(4,\frac{π}{3})$ | B. | (4,$\frac{4π}{3}$) | C. | (-4,-$\frac{2π}{3}$) | D. | $(4,\frac{2π}{3})$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com