分析:當(dāng)x>0時(shí)函數(shù)y=lnx+2x-6的零點(diǎn)個數(shù)等價(jià)于g(x)=lnx與h(x)=6-2x交點(diǎn)的個數(shù),在同一坐標(biāo)系中畫出兩個函數(shù)的圖象可得到答案;當(dāng)x≤0時(shí),解y=-x(x+1)=0可求得兩個零點(diǎn),進(jìn)而可得到原函數(shù)的零點(diǎn)個數(shù)為3個.
解答:
解:當(dāng)x>0時(shí)函數(shù)y=lnx+2x-6的零點(diǎn)個數(shù)等價(jià)于lnx=6-2x的根的個數(shù),
令g(x)=lnx,h(x)=6-2x,
∵lnx=6-2x的根的個數(shù)等價(jià)于函數(shù)g(x)與h(x)的交點(diǎn)個數(shù),
在同一坐標(biāo)系中畫出兩個函數(shù)的圖象如圖,
故x>0時(shí)只有一個零點(diǎn);
當(dāng)x≤0時(shí),y=-x(x+1),
令y=-x(x+1)=0,得到x=0或x=-1,
函數(shù)y=-x(x+1)有2個零點(diǎn),
∴函數(shù)
f(x)= | | lnx+2x-6(x>0) | | -x(x+1)(x≤0) |
| |
的零點(diǎn)個數(shù)是3,
故選D.
點(diǎn)評:本題主要考查函數(shù)零點(diǎn)個數(shù)的判斷和函數(shù)零點(diǎn)的等價(jià)條件,函數(shù)有零點(diǎn)等價(jià)與函數(shù)與x軸有交點(diǎn),等價(jià)與對應(yīng)方程有實(shí)數(shù)根.