欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.在△ABC中角A,B,C的對邊分別是a,b,c,且$\frac{asinA+bsinB-csinC}{sinBsinC}$=$\frac{2\sqrt{3}}{3}$a,a=2$\sqrt{3}$,若b∈[1,3],則c的最小值為3.

分析 由已知及正弦定理可得:$\frac{{a}^{2}+^{2}-{c}^{2}}{ab}$=$\frac{2\sqrt{3}}{3}$sinC,結(jié)合余弦定理,可得3cosC=$\sqrt{3}$sinC,從而可求tanC,利用同角三角函數(shù)基本關(guān)系式可求cosC,從而可求c2=b2-2$\sqrt{3}$b-12=(b-$\sqrt{3}$)2+9,結(jié)合范圍b∈[1,3],利用二次函數(shù)的圖象和性質(zhì)即可解得c的最小值.

解答 解:∵$\frac{asinA+bsinB-csinC}{sinBsinC}$=$\frac{2\sqrt{3}}{3}$a,
∴由正弦定理可得:$\frac{{a}^{2}+^{2}-{c}^{2}}{ab}$=$\frac{2\sqrt{3}}{3}$sinC,整理可得:a2+b2-c2=$\frac{2\sqrt{3}absinC}{3}$,
又∵由余弦定理可得:a2+b2-c2=2abcosC,
∴2abcosC=$\frac{2\sqrt{3}absinC}{3}$,整理可得:3cosC=$\sqrt{3}$sinC,
∴解得:tanC=$\sqrt{3}$,cosC=$\sqrt{\frac{1}{1+ta{n}^{2}C}}$=$\frac{1}{2}$,
∴c2=b2-2$\sqrt{3}$b-12=(b-$\sqrt{3}$)2+9,
∵b∈[1,3],
∴當(dāng)b=$\sqrt{3}$時,c取最小值為3.
故答案為:3.

點(diǎn)評 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式,二次函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北省高二8月月考數(shù)學(xué)試卷(解析版) 題型:填空題

執(zhí)行下邊的程序框圖6,若p=0.8,則輸出的n= .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)直線l與雙曲線x2-y2=1的右支相交于M,N兩點(diǎn),與⊙C:(x-4)2+y2=r2(r>0)相切于點(diǎn)P,且P為線段MN的中點(diǎn),若這樣的直線l恰有4條,則r的取值范圍是( 。
A.($\sqrt{2}$,$\sqrt{6}$)B.($\sqrt{2}$,$\sqrt{7}$)C.(2,$\sqrt{6}$)D.(2,$\sqrt{7}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lg(2-x),(x<1)}\\{1{0}^{(x-1)},(x≥1)}\end{array}\right.$,則f(-8)+f(lg40)=( 。
A.5B.6C.9D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知單位圓與x軸,y軸的正半軸交于B,D,以B,D為切點(diǎn)的切線交于點(diǎn)C,O為原點(diǎn),若$\overrightarrow{OC}$=x$\overrightarrow{DB}$+y$\overrightarrow{OP}$(xy≠0),點(diǎn)P為弧$\widehat{BD}$上一點(diǎn),∠BOP=$\frac{π}{3}$,則2x+y=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.一般來說,一個人腳掌越長,他的身高越高,現(xiàn)對10名成年人的腳掌長x與身高y進(jìn)行測量,得到數(shù)據(jù)(單位均為cm)作為一個樣本如下表所示:
腳掌長(x)
 
20212223242526272829
身高(y)141146154160169176181188197203
(1)在上表數(shù)據(jù)中,以“腳掌長”為橫坐標(biāo),“身高”為縱坐標(biāo),作出散點(diǎn)圖后,發(fā)現(xiàn)三點(diǎn)在一條直線附近,試求“身高”與“腳掌長”之間的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+a
(2)若某人的腳掌長為26cm,試估計此人的升高;
(3)在樣本中,從身高180cm以上的4人中隨機(jī)抽取2人作進(jìn)一步的分析,求所抽取的2人中至少有1人在190cm以上的概率. 
參考數(shù)據(jù):$\sum_{i=1}^{10}$(xi-$\overline{x}$)(yi-$\overline{y}$)=577.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)2=82.5)
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\overline$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{1}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x|x-2a|+3(1≤x≤2).
(1)當(dāng)a=$\frac{3}{4}$時,求函數(shù)的值域;
(2)若函數(shù)f(x)的最大值是M(a),最小值為m(a),求函數(shù)h(a)=M(a)-m(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)z=$\frac{1-3i}{i-1}$在復(fù)平面上所對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不論k為何實數(shù),直線(2k-1)x-(k+3)y-(k-11)=0恒通過一個定點(diǎn),這個定點(diǎn)的坐標(biāo)是(2,3).

查看答案和解析>>

同步練習(xí)冊答案