分析 根據(jù)數(shù)列的遞推關(guān)系得到$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n}+1}$,利用裂項法進(jìn)行求和,即可得到結(jié)論.
解答 解:由an+1=an2+an,
得an+1=an(an+1),
取倒數(shù)得$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n}+1}$,
則$\frac{1}{{a}_{n}+1}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,
即m=$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}+…+\frac{1}{{a}_{2015}+1}$=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2015}}$-$\frac{1}{{a}_{2016}}$=2-$\frac{1}{{a}_{2016}}$,
∵an+1=an2+an>an,
∴$\frac{1}{{a}_{n+1}}$<$\frac{1}{{a}_{n}}$,
且a3>1,a2016>1.
∴0<$\frac{1}{{a}_{2016}}$<1,
即-1>-$\frac{1}{{a}_{2016}}$>-2,
則2>2-$\frac{1}{{a}_{2016}}$>1,
即1<m<2.
則所求整數(shù)部分為1.
故答案為:1.
點評 本題主要考查遞推數(shù)列的應(yīng)用.根據(jù)遞推公式求出$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n}+1}$是解決本題的關(guān)鍵.屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,-1)與(1,+∞) | B. | (0,1)∪(1,+∞) | C. | (0,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0.8 | B. | 0.64 | C. | 0.16 | D. | 0.04 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com