欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.(1)證明:垂直同一平面的兩直線平行;
(2)已知l1⊥平面α,l2⊥平面α,且l1,l2與α的交點分別為O1,O2,A、B分別在l1,l2上,且AO1=3,BO2=1,O1O2=2,求|AB|.

分析 (1)可用反證法證明:垂直于同一平面的兩條直線平行.設(shè)直線a、b都與平面α垂直,并假設(shè)a、b不平行,再作出輔助線和輔助平面,結(jié)合線面垂直的定義和平行線的性質(zhì),可以證出經(jīng)過空間一點有兩條直線與已知直線垂直,得到與公理矛盾,所以原假設(shè)不成立,從而得到原命題是真命題;
(2)由(1)知,l1∥l2,過B作BC⊥AO1,利用勾股定理可得結(jié)論.

解答 (1)證明:設(shè)直線a、b都與平面α垂直,可以用反證法證明a、b必定是平行直線
假設(shè)a、b不平行,過直線b與平面α的交點作直線d,使d∥a
∴直線d與直線b是相交直線,設(shè)它們確定平面β,且β∩α=c
∵b⊥α,c?α,∴b⊥c.同理可得a⊥c,
又∵d∥a,∴d⊥c
這樣經(jīng)過一點作出兩條直線b、d都與直線c垂直,這是不可能的
∴假設(shè)不成立,故原命題是真命題;
(2)解:由(1)知,l1∥l2,過B作BC⊥AO1,則BC=O1O2=2,AC=2,
∴|AB|=2$\sqrt{2}$.

點評 考查了反證法的思路和線面垂直的定義等知識點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知各項不為0的等差數(shù)列{an}滿足a3-2a62+3a7=0,數(shù)列{bn}是等比數(shù)列,且b6=a6,則b1b7b10等于( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=(x-1)ex-ax2
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)2<a<3時,求函數(shù)f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=$\frac{x}{m(x+2)}$,方程f(x)=x有唯一解,數(shù)列{an}滿足f(an)=an+1(n∈N*),且f(1)=$\frac{2}{3}$數(shù)列{bn}滿足bn=$\frac{{4-3{a_n}}}{a_n}({n∈{N^*}})$.
(Ⅰ)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列;
(Ⅱ)數(shù)列{cn}滿足cn=$\frac{1}{{{b_n}•{b_{n+1}}}}({n∈{N^*}})$,其前n項和為Sn,若存在n∈N*,使kSn=$\frac{1}{2}n+4({k∈R})$成立,求k的最小值;
(Ⅲ)若對任意n∈N*,使不等式$\frac{t}{{({\frac{1}{b_1}+1})({\frac{1}{b_2}+1})…({\frac{1}{b_n}+1})}}≤\frac{1}{{\sqrt{2n+1}}}$成立,求實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖是某市11月1日至15日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200,表示空氣質(zhì)量重度污染,該市某校準(zhǔn)備舉行為期3天(連續(xù)3天)的運動會,在11月1日至11月13日任選一天開幕
(Ⅰ)求運動會期間至少兩天空氣質(zhì)量優(yōu)良的概率;
(Ⅱ)記運動會期間,空氣質(zhì)量優(yōu)良的天數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$\overrightarrow{a}$=(x-1,2),$\overrightarrow$=(4,y)(x,y為正),若$\overrightarrow{a}$⊥$\overrightarrow$,則xy的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知φ∈R,則“φ=0”是“f(x)=sin(2x+φ)為奇函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平面內(nèi),曲線C上存在點P,使點P到點A(3,0),B(-3,0)的距離之和為10,則稱曲線C為“有用曲線”.以下曲線不是“有用曲線”的是( 。
A.x+y=5B.x2+y2=9C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1D.x2=16y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知復(fù)數(shù)z=$\frac{2i}{1-i}$-1,其中i為虛數(shù)單位,則z的模為$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案