解:方案一,如圖,矩形有兩個頂點(diǎn)在半徑OA上,
![]()
設(shè)∠AOP=θ,則PM=a·sinθ.
∵扇形中心角為60°,∴∠PQO=120°.
由正弦定理,得
=
,
∴PQ=
·a·sin(60°-θ).
故矩形MPQR的面積為
S1=PM·PQ=
a2·sinθ·sin(60°-θ)
=
·a2[cos(2θ-60°)-cos60°]≤
·a2·(1-
)=
a2.
當(dāng)cos(2θ-60°)=1.
即θ=30°時,S1取得最大值
a2.方案二:如圖,矩形有兩個頂點(diǎn)分別在扇形的兩條半徑OA、OB上.
![]()
設(shè)∠AOM=θ,∠MRA=
×60°=30°,∠MRO=150°,
由正弦定理,得
=
.
∴RM=2a·sinθ.
又
=
.
∴OR=RQ=2a·sin(30°-θ).
∴矩形MPQR的面積為
S2=MR·RQ=4a2·sinθ·sin(30°-θ)
=2a2[cos(2θ-30°)-cos30°]
≤2a2·(1-
)=(2-
)a2,
即在此情況下,∠AOM=15°時,可求出M點(diǎn),然后作出MPQR面積為最大.
由于S1-S2=
a2-(2-
)a2=
(7
-12)>0,
所以第一種方案能使截出的矩形面積最大,即∠AOP=θ=30°,使P取在AB弧中點(diǎn),分別向扇形的一條半徑作垂線及平行線得到矩形MPQR,即為最大矩形.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com