分析 (1)運(yùn)用等差數(shù)列的定義和通項(xiàng)公式,即可得到所求通項(xiàng);
(2)由bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),運(yùn)用裂項(xiàng)相消求和,可得前n項(xiàng)和為Tn.再由不等式的解法即可得到n的最小正整數(shù).
解答 解:(1)Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$(n≥2),即有
($\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$)($\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$)=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$,
即為$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1,
則數(shù)列{$\sqrt{{S}_{n}}$}為首項(xiàng)為1,公差為1的等差數(shù)列,
則有$\sqrt{{S}_{n}}$=1+n-1=n,
即有Sn=n2,
則an=Sn-Sn-1=n2-(n-1)2=2n-1;
(2)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
前n項(xiàng)和為Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
Tn>$\frac{1000}{2009}$即為n>$\frac{1000}{9}$,
則最小正整數(shù)n為112.
點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式的運(yùn)用,考查數(shù)列求和的方法:裂項(xiàng)相消求和,考查運(yùn)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 0 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 7 | B. | -7 | C. | 11 | D. | -11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com