【題目】已知函數(shù)f(x)=lnx,g(x)=x2 . (Ⅰ)求函數(shù)h(x)=f(x)﹣x+1的最大值;
(Ⅱ)對(duì)于任意x1 , x2∈(0,+∞),且x1<x2 , 是否存在實(shí)數(shù)m,使mg(x1)﹣mg(x2)﹣x2f(x2)+x1f(x1)恒為正數(shù)?若存在,求出m的取值范圍;若不存在,說明理由.
【答案】解:(Ⅰ)函數(shù)h(x)的定義域?yàn)椋?,+∞), ∵h(yuǎn)(x)=lnx﹣x+1,∴h′(x)=
﹣1=
,
當(dāng)x∈(0,1)時(shí),h′(x)>0;當(dāng)x∈(1,+∞)時(shí),h′(x)<0.
∴h(x)在(0,1)上是單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
∴h(x)max=h(1)=0,即函數(shù)的最大值為0.
(Ⅱ)若mg(x2)﹣mg(x1)﹣x1f(x1)+x2f(x2)>0恒成立,只需mg(x2)+x2f(x2)>mg(x1)+x1f(x1),
設(shè)φ(x)=mg(x)+xf(x)=mx2+xlnx,
又0<x1<x2 , 則只需φ(x)在(0,+∞)上單調(diào)遞減.
∴φ′(x)=2mx+1+lnx≤0在(0,+∞)上成立,得2m≤
,
設(shè)t(x)=
,則t′(x)=
,知函數(shù)t(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,即t(x)min=t(1)=﹣1.
∴存在實(shí)數(shù)m≤﹣
,使mg(x2)﹣mg(x1)﹣x1f(x1)+x2f(x2)恒為正數(shù)
【解析】(Ⅰ)求出函數(shù)的定義域、導(dǎo)數(shù)h′(x),由導(dǎo)數(shù)的符號(hào)可知函數(shù)單調(diào)性,根據(jù)單調(diào)性即可得到最大值;(Ⅱ)mg(x2)﹣mg(x1)﹣x1f(x1)+x2f(x2)>0恒成立,只需mg(x2)+x2f(x2)>mg(x1)+x1f(x1),設(shè)φ(x)=mg(x)+xf(x)=mx2+xlnx,又0<x1<x2 , 則只需φ(x)在(0,+∞)上單調(diào)遞減.從而有φ′(x)=2mx+1+lnx≤0在(0,+∞)上恒成立,分離出參數(shù)m后化為函數(shù)最值即可,利用導(dǎo)數(shù)可求得函數(shù)的最值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間
內(nèi),(1)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)
在
上的最大值與最小值的步驟:(1)求函數(shù)
在
內(nèi)的極值;(2)將函數(shù)
的各極值與端點(diǎn)處的函數(shù)值
,
比較,其中最大的是一個(gè)最大值,最小的是最小值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,cos2C+2
cosC+2=0.
(1)求角C的大;
(2)若b=
a,△ABC的面積為
sinAsinB,求sinA及c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非空集合A,B滿足以下兩個(gè)條件.
(。〢∪B={1,2,3,4,5,6},A∩B=;
(ⅱ)A的元素個(gè)數(shù)不是A中的元素,B的元素個(gè)數(shù)不是B中的元素,則有序集合對(duì)(A,B)的個(gè)數(shù)為( )
A.10
B.12
C.14
D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在過點(diǎn)(1,0)的直線與曲線y=x3和
都相切,則a等于( )
A.﹣1或 ![]()
B.﹣1或 ![]()
C.
或 ![]()
D.
或7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要在如圖所示的花圃中的5個(gè)區(qū)域中種入4種顏色不同的花,要求相鄰區(qū)域不同色,有種不同的種法(用數(shù)字作答). ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={y|y=log
x,
},B={x|y=
}.
(1)若a=2,求A∩B;
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD. ![]()
(Ⅰ)求證:BD⊥平面ECD.
(Ⅱ)求D點(diǎn)到面CEB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列說法: ①函數(shù)y=﹣cos2x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=
,k∈Z};
③在同一直角坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);
④函數(shù)f(x)=4sin(2x+
)(x∈R)可以改寫為y=4cos(2x﹣
);
⑤函數(shù)y=sin(x﹣
)在[0,π]上是減函數(shù).
其中,正確的說法是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
為奇函數(shù).
(1)若函數(shù)f(x)在區(qū)間
上為單調(diào)函數(shù),求m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間[1,k]上的最小值為3k,求k的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com