已知函數(shù)
(
).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)請問,是否存在實數(shù)
使
上恒成立?若存在,請求實數(shù)
的值;若不存在,請說明理由.
(1)
在
上單調(diào)遞增,在
上單調(diào)遞減;(2)存在,
=1。
【解析】
試題分析:(1)1、求定義域,2、求導(dǎo)數(shù),然后令導(dǎo)數(shù)等于0,解出導(dǎo)函數(shù)根,再由
,得出
的取值范圍,則
在此區(qū)間內(nèi)單調(diào)遞增,又由
,得出
的取值范圍,則
在此區(qū)間內(nèi)單調(diào)遞減;(2)對于恒成立問題,一般要求出函數(shù)在區(qū)間內(nèi)的最大值或最小值。即
恒成立,則
,
恒成立,則
,本題要討論
的取值范圍,再結(jié)合函數(shù)的單調(diào)性即可求解。
試題解析:(1)
2分
當
時,
恒成立,
則函數(shù)
在
上單調(diào)遞增 4分
當
時,由
得
則
在
上單調(diào)遞增,在
上單調(diào)遞減 6分
(2)存在. 7分
由(1)得:當
時,函數(shù)
在
上單調(diào)遞增
顯然不成立;
當
時,
在
上單調(diào)遞增,在
上單調(diào)遞減
∴
,
只需
即可 9分
令![]()
則
,
函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增.
∴
, 10分
即
對
恒成立,
也就是
對
恒成立,
∴
解得
,
∴若
在
上恒成立,
=1. 12分
考點:1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性問題;2、不等式恒成立問題;3、分類討論思想
科目:高中數(shù)學(xué) 來源:2015屆福建省晉江市高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖是根據(jù)某賽季甲、乙兩名籃球運動員每場比賽得分情況畫出的莖葉圖.從這個莖葉圖可以看出甲、乙兩名運動員得分的中位數(shù)分別是( ).
![]()
A.31,26 B.36,23 C.36,26 D.31,23
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆福建省等三校高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:選擇題
若對于任意的實數(shù)
,都有
,則
的值是( )
A.3 B.6 C.9 D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆福建省四地六校高二下學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知
是虛數(shù)單位,則
=_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆福建省四地六校高二下學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)
的圖象上一點
處的切線的斜率為( )
A.-
B.
C.-
D.-![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆福建省四地六校高二下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
在平面上,我們用一直線去截正方形的一個角,那么截下的一個直角三角形,按如圖所標邊長,由勾股定理有
.設(shè)想正方形換成正方體,把截線換成如圖截面,這時從正方體上截下三條側(cè)棱兩兩垂直的三棱錐
,如果用
表示三個側(cè)面面積,
表示截面面積,那么類比得到的結(jié)論是 .
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆福建省四地六校高二下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
觀察
,
,
,由歸納推理可得:若定義在
上的函數(shù)
滿足
,記
為
的導(dǎo)函數(shù),則
=( 。
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:填空題
若命題“![]()
恒成立”是真命題,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知有限集![]()
.如果
中元素
滿足
,就稱
為“復(fù)活集”,給出下列結(jié)論:
①集合
是“復(fù)活集”;
②若
,且
是“復(fù)活集”,則
;
③若
,則
不可能是“復(fù)活集”;
④若
,則“復(fù)合集”
有且只有一個,且
.
其中正確的結(jié)論是 .(填上你認為所有正確的結(jié)論序號).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com