函數(shù)
f(x)=的定義域?yàn)椋ā 。?/div>
分析:原函數(shù)分子含有根式需要根式內(nèi)部的代數(shù)式大于等于0,同時(shí)需要分母不等于0,取交集.
解答:解:要使原式有意義,需要
,解得:x≥-2,且x≠2,
所以原函數(shù)的定義域?yàn)閇-2,2)∪(2,+∞).
故選C.
點(diǎn)評(píng):本題考查了函數(shù)的定義域的求法,解答的關(guān)鍵是保證構(gòu)成函數(shù)的各個(gè)部分都有意義,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)函數(shù)f(x)=a
2x
2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
,求a的值;
(2)關(guān)于x的不等式(x-1)
2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)
a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)的定義域?yàn)镽,則下列命題中:?
①若f(x-2)是偶函數(shù),則函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱;?②若f(x+2)=-f(x-2),則函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱;?③函數(shù)y=f(2+x)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱;?④函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱.?
其中正確的命題序號(hào)是
④
④
.?
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:填空題
已知函數(shù)f(x)的定義域?yàn)镽,則下列命題中:?
①若f(x-2)是偶函數(shù),則函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱;?②若f(x+2)=-f(x-2),則函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱;?③函數(shù)y=f(2+x)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱;?④函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱.?
其中正確的命題序號(hào)是________.?
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:徐州模擬
題型:解答題
設(shè)函數(shù)f(x)=a
2x
2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2,求a的值;
(2)關(guān)于x的不等式(x-1)
2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)
a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:《2.2 綜合法與分析法》2013年同步練習(xí)(解析版)
題型:選擇題
下面對(duì)命題“函數(shù)f(x)=x+

是奇函數(shù)”的證明不是綜合法的是( )
A.?x∈R且x≠0有f(-x)=(-x)+

=-(x+

)=-f(x),∴f(x)是奇函數(shù)
B.?x∈R且x≠0有f(x)+f(-x)=x+

+(-x)+(-

)=0,∴f(x)=-f(-x),∴f(x)是奇函數(shù)
C.?x∈R且x≠0,∵f(x)≠0,∴

=

=-1,∴f(-x)=-f(x),∴f(x)是奇函數(shù)
D.取x=-1,f(-1)=-1+

=-2,又f(1)=1+

=2
查看答案和解析>>