【題目】已知實(shí)數(shù)x,y滿足
,則
的取值范圍是__________.
【答案】![]()
【解析】
變形可得(x﹣2)2+y2=1,所求式子表示圓上的點(diǎn)M(x,y)與定點(diǎn)A(1,﹣3)連線的斜率k加上1,利用直線和圓相切的性質(zhì)求得k的范圍,可得結(jié)論.
解:∵實(shí)數(shù)x,y滿足x2﹣4x+3+y2=0,即(x﹣2)2+y2=1,表示以C(2,0)為圓心,半徑等于1的圓.
則
1
,表示圓上的點(diǎn)M(x,y)與定點(diǎn)A(1,﹣3)連線的斜率k加上1,如圖.
當(dāng)切線位于AB這個位置時,k最小,k+1最小.
當(dāng)切線位于AE這個位置時,k不存在,k+1不存在.
設(shè)AB的方程為y+3=k(x﹣1),即 kx﹣y﹣k﹣3=0,由CB=1,可得
1,求得k
.
而AE的方程為x=1,
故k+1的范圍為[
,+∞),
故答案為:[
,+∞).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
是奇函數(shù),則①
一定是偶函數(shù);②
一定是偶函數(shù);③
;④
.其中正確的是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
若函數(shù)
,求
在
上的最小值;
Ⅱ
記函數(shù)
,若函數(shù)
在
上有兩個零點(diǎn)
,
,求實(shí)數(shù)a的取值范圍,并證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,且
cosC+
=1.
(1)求角A的大。
(2)若a=1,求△ABC的周長l的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,
,
為自然對數(shù)的底數(shù).
(Ⅰ)若函數(shù)
在
上存在零點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅱ)若函數(shù)
在
處的切線方程為
.求證:對任意的
,總有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
=
+
,其中a>0且a≠1。
(1)求函數(shù)
的定義域;
(2)若函數(shù)
有最小值而無最大值,求
的單調(diào)增區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營狀況良好的某種消費(fèi)品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計息).在甲提供的資料中:①這種消費(fèi)品的進(jìn)價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.
![]()
(1)當(dāng)商品的價格為每件多少元時,月利潤扣除職工最低生活費(fèi)的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓
(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 點(diǎn)D在橢圓上.DF1⊥F1F2 ,
=2
,△DF1F2的面積為
. ![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓心在y軸上的圓與橢圓在x軸的上方有兩個交點(diǎn),且圓在這兩個交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn),求圓的半徑.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com