欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點為F,過點F作一條漸近線的垂線,垂足為A,△OAF的面積為
3
2
a2
(O為原點),則此雙曲線的離心率是
 
分析:依題意,可求得過F(c,0)與一條漸近線bx-ay=0垂直的直線與bx-ay=0的交點A的坐標,利用△OAF的面積為
3
2
a2
,即可求得此雙曲線的離心率.
解答:解:設過F(c,0)與一條漸近線bx-ay=0垂直的直線為l,則l的方程為:y=-
a
b
(x-c),
y=
b
a
x
y=-
a
b
(x-c)
得:x=
a2
c
,y=
ab
c
,即A(
a2
c
ab
c
),
∵△OAF的面積為
3
2
a2
,
1
2
|OF|×yA=
1
2
ab
c
=
3
2
a2
,
∴b=
3
a,
c2
a2
=
a2+b2
a2
=
a2+3a2
a2
=4,
∴e=
c
a
=2.
故答案為:2.
點評:本題考查雙曲線的性質(zhì),考查轉(zhuǎn)化思想與方程思想,求得A的坐標是關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點F1,交雙曲線的左支于A、B兩點,且|AB|=4,F(xiàn)2為雙曲線的右焦點,△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點與拋物線y2=4x的焦點重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標原點,離心率e=2,點M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點,且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點與拋物線y2=4
3
x
的焦點重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習冊答案