分析 由三棱錐P-ABC的體積為2$\sqrt{3}$,求出PA,將三棱錐補(bǔ)成三棱柱,可得球心在三棱柱的中心,球心到底面的距離d等于三棱柱的高PA的一半,求出球的半徑,然后求出球的表面積.
解答 解:∵三棱錐P-ABC的體積為2$\sqrt{3}$,
∴$\frac{1}{3}$×$\frac{\sqrt{3}}{4}×(2\sqrt{3})^{2}PA$=2$\sqrt{3}$,
∴PA=2,
將三棱錐補(bǔ)成三棱柱,可得球心在三棱柱的中心,
球心到底面的距離d等于三棱柱的高PA的一半,
∵△ABC是邊長為2$\sqrt{3}$的正三角形,
∴△ABC外接圓的半徑r=2,
∴球的半徑為$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
∴球O的表面積為4π×5=20π.
故答案為:20π
點(diǎn)評 本題考查球的內(nèi)接體與球的關(guān)系,考查空間想象能力,利用割補(bǔ)法結(jié)合球內(nèi)接多面體的幾何特征求出球的半徑是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 假設(shè)有兩個(gè)內(nèi)角超過90° | B. | 假設(shè)有三個(gè)內(nèi)角超過90° | ||
| C. | 假設(shè)至多有兩個(gè)內(nèi)角超過90° | D. | 假設(shè)四個(gè)內(nèi)角均超過90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 過空間三點(diǎn)有且只有一個(gè)平面 | |
| B. | 若兩個(gè)平面都和第三個(gè)平面垂直,則這兩個(gè)平面平行 | |
| C. | 若兩條直線都和第三條直線垂直,則這兩條直線平行 | |
| D. | 垂直于同一平面的兩條直線平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 廣告費(fèi)用x | 1 | 2 | 3 | 4 | 5 |
| 銷售額y | 10 | 15 | 25 | 45 | 55 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com