分析 (1)由a1=1,an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2n-2}$(n≥2,n∈N*),分別取n=2,3,4即可得出.可得a2,a3,a4.
(2)由an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2n-2}$,兩邊取倒數(shù)化簡(jiǎn)可得:$\frac{n}{{a}_{n}}$+1=2($\frac{n-1}{{a}_{n-1}}$+1),利用等比數(shù)列的通項(xiàng)公式即可得出.
(3)bn=(1-$\frac{1}{{2}^{n}}$)an=$\frac{n}{{2}^{n}}$.利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)由a1=1,an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2n-2}$(n≥2,n∈N*).可得a2=$\frac{2{a}_{1}}{{a}_{1}+2×2-2}$=$\frac{2}{3}$,同理可得a3=$\frac{3}{7}$,a4=$\frac{4}{15}$.
(2)由an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2n-2}$,兩邊取倒數(shù)化簡(jiǎn)可得:$\frac{n}{{a}_{n}}$+1=2($\frac{n-1}{{a}_{n-1}}$+1),
∴數(shù)列$\{\frac{n}{{a}_{n}}+1\}$是等比數(shù)列,首項(xiàng)為2,公比為2.
∴$\frac{n}{{a}_{n}}$+1=2n,
解得an=$\frac{n}{{2}^{n}-1}$.
(3)bn=(1-$\frac{1}{{2}^{n}}$)an=$\frac{n}{{2}^{n}}$.
∴數(shù)列{bn}的前n項(xiàng)和Sn=$\frac{1}{2}+\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$.
$\frac{1}{2}{S}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
∴$\frac{1}{2}{S}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=1-$\frac{2+n}{{2}^{n+1}}$.
∴Sn=$2-\frac{2+n}{{2}^{n}}$.
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | 3 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | [-2,2] | B. | (0,+∞) | C. | (0,2] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (1,2) | B. | (-1,0) | C. | (-2,-1) | D. | (-6,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -2 | B. | 4 | C. | -6 | D. | 6 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com