欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù),a∈R.
(1)若a=2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若a=0,求證:,恒成立.
【答案】分析:(1)若a=2,,由此能求出函數(shù)f(x)的單調(diào)區(qū)間.
(2)a=0時(shí),只需證明,只需證明.令,由此能夠證明恒成立.
解答:解:(1)若a=2,
當(dāng)0<x<2時(shí)f′(x)<0  函數(shù)f(x)單調(diào)遞減
當(dāng)x>2時(shí) f′(x)>0 函數(shù)f(x)單調(diào)遞增
所以函數(shù)f(x)的減區(qū)間為(0,2),增區(qū)間為(2,+∞)         (5分)
(2)證明:a=0時(shí) 
只需證明
即證
只需證明(8分)

所以g(x)在(1,+∞)上為增函數(shù),
所以g(x)>g(1)=0

所以恒成立                    (12分)
點(diǎn)評(píng):函數(shù)的單調(diào)區(qū)間的求法,考查不等式的證明.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市十一學(xué)校高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問(wèn):函數(shù)f(x)是否存在“中值相依切線”,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省百所重點(diǎn)高中高三(上)段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問(wèn):函數(shù)f(x)是否存在“中值相依切線”,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省常州高級(jí)中學(xué)高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問(wèn):函數(shù)f(x)是否存在“中值相依切線”,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省天水一中高一(下)第二次段考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最大值;
(2)如果對(duì)于區(qū)間上的任意一個(gè)x,都有f(x)≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省梅州市高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:解答題

 

已知函數(shù)  (a∈R).

 (1)若在[1,e]上是增函數(shù),求a的取值范圍; 

(2)若a=1,1≤x≤e,證明:<.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案