欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.已知函數(shù)f(x)=x(m+e-x),其中e為自然對(duì)數(shù)的底數(shù),曲線y=f(x)上存在不同的兩點(diǎn),使得曲線在這兩點(diǎn)處的切線都與y軸垂直,則實(shí)數(shù)m的取值范圍是( 。
A.(0,e-2B.(e-2,+∞)C.(0,e2D.(e2,+∞)

分析 轉(zhuǎn)化條件為函數(shù)有兩個(gè)極值,通過(guò)導(dǎo)函數(shù)為0,推出m的表達(dá)式,轉(zhuǎn)化兩個(gè)函數(shù)的圖象由兩個(gè)交點(diǎn),利用導(dǎo)函數(shù)的單調(diào)性,求出函數(shù)的值域,轉(zhuǎn)化求解m的范圍即可.

解答 解:曲線y=f(x)上存在不同的兩點(diǎn),使得曲線在這兩點(diǎn)處的切線都與y軸垂直,等價(jià)于函數(shù)f(x)由兩個(gè)不同極值,即f′(x)=0有兩個(gè)不相同的實(shí)數(shù)根,令f′(x)=m+e-x-xe-x=0,可得m=$\frac{x-1}{{e}^{x}}$,令g(x)=$\frac{x-1}{{e}^{x}}$,則條件轉(zhuǎn)化為直線y=m與y=g(x)有兩個(gè)不同交點(diǎn),
g′(x)=$\frac{{e}^{x}-(x-1){e}^{x}}{{e}^{2x}}$=$\frac{2-x}{{e}^{x}}$,
當(dāng)x=2時(shí),g′(x)=0,
當(dāng)x>2時(shí),g′(x)<0,g(x)是增函數(shù);
當(dāng)x<2時(shí),g′(x)>0,g(x)是減函數(shù);
所以x=2時(shí),函數(shù)有極大值也是最大值,g(2)=e-2,x→-∞時(shí),g(x)→-∞,x→+∞時(shí),g(x)→0,
從而m∈(0,e-2).
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性以及函數(shù)的極值的關(guān)系,考查轉(zhuǎn)化思想以及分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,若輸入N的值為19,則輸出N的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知實(shí)數(shù)x,y滿(mǎn)足不等式組$\left\{\begin{array}{l}{1≤x+y≤2}\\{-1≤x-y≤1}\end{array}\right.$,則z=$\frac{y+1}{x+1}$的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)函數(shù)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若對(duì)任意的x∈[a,b],都有|f(x)-g(x)|≤k(k≥0),則稱(chēng)f(x)與g(x)在[a,b]上是“k度和諧函數(shù)”,[a,b]稱(chēng)為“k度密切區(qū)間”.設(shè)函數(shù)f(x)=lnx與$g(x)=\frac{mx-1}{x}$在[$\frac{1}{e}$,e]上是“e度和諧函數(shù)”,則m的取值范圍是-1≤m≤1+e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)函數(shù)f(x)=x3+3x2+6x+14且f(a)=1,f(b)=19.則a+b=( 。
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)${({1+x+{x^2}})^n}={a_0}+{a_1}x+{a_1}{x^2}+…+{a_{2n}}{x^{2n}}$.
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a2+a4+…+a2n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知數(shù)列{an}滿(mǎn)足a1=1,an+1=an2+an,設(shè)bn=$\frac{1}{{a}_{n}+1}$,用[x]表示不超過(guò)x的最大整數(shù),則[b1+b2+…+b8]的值為( 。
A.1B.0C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{x}{lnx}$-ax,a∈R
(1)若函數(shù)f(x)存在單調(diào)遞增區(qū)間,求a的取值范圍;
(2)若存在x∈[e,e2],使得不等式f(x)≤$\frac{1}{4}$成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題p:“?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0”,則¬p為(  )
A.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≥0B.?x0∈R,e${\;}^{{x}_{0}}$-x0-1>0
C.?x∈R,ex-x-1>0D.?x∈R,ex-x-1≥0

查看答案和解析>>

同步練習(xí)冊(cè)答案